# Wetland Salinity: Predicting the ecological consequences



# FACT SHEET No. 1 - Aquatic Plants

# **Project Objectives**

- To quantify the relationship between increasing salinity and the structure of biological communities that develop from dormant aquatic plant seeds and zooplankton eggs.
- To determine how the interaction between salinity and hydrology influence wetland biological communities.

# Background

Within the sediments of wetlands and rivers there is a store of seeds of aquatic plants that provides an important reservoir of biodiversity. Loss of viability of the "seed-bank" will have a significant impact on the biodiversity of wetlands

### Methods

- Sediment from 7 wetlands was exposed to 5 salinities - <800, 1500, 3000, 4500 & 7500 EC units (μS/cm).
- Sediment was flooded at either a shallow or deep level.
- The number of aquatic plants germinating and the number of different types of aquatic plants germinating were counted after 16 weeks.

### Results

The response of aquatic plant communities developing from the seed bank in the Great Cumbung Swamp sediment under increasing salinity was typical of those germinating from the other 6 wetlands with a decrease in diversity and abundance as salinity increased.

This response was more apparent in shallowly flooded sediment when compared to the deeper flooded sediment.

### Overall:

- Salinity above 1500 EC units reduces aquatic plant community richness and abundance.
- The effect is more obvious in aquatic plant edge communities than more frequently flooded areas.
- Aquatic plant communities in different wetlands respond in different ways to different levels of salinity.

# **Key outcomes**

- 1. Assisting communities set, revise and deliver on current and future salinity targets and associated management actions.
- 2. Contributing knowledge needed to guide the conservation of wetlands not impacted by salinity.



800 EC



1500 EC



7500 EC

Project Numbers: DLWC 4044 & CRCFE D723
Project Leaders: Dr Daryl Nielsen & Dr Margaret Brock
For more information contact: Dr Daryl Nielsen - Murray-Darling Freshwater Research Centre

PO Box 921, Albury, NSW, 2640.

Ph: 02 60582339

Fax: 02 60431626

Email: daryl.nielsen@csiro.au