Lower Hunter Particle Characterisation Study

1st Progress Report

Mark F. Hibberd, Melita D. Keywood, David D. Cohen (ANSTO), Ed Stelcer (ANSTO), Yvonne Scorgie (OEH), Scott Thompson (OEH), and Kelly Rivett (OEH)

July 2014

Prepared for
NSW Environment Protection Authority (Contact: Judy Greenwood)
Contents

Acknowledgments .. ii

1 Introduction .. 1
 1.1 Study Objectives ... 1
 1.2 Background ... 1
 1.3 Study Scope and Overview ... 2

2 Study Design .. 4
 2.1 OEH Regional Air Quality Monitoring Stations ... 4
 2.2 Sampling Sites ... 6
 2.3 Sampling Equipment ... 9
 2.4 Analysis Techniques ... 12
 2.5 Supporting Analysis ... 14

3 Report on March-May 2014 Sampling .. 16
 3.1 Commissioning .. 16
 3.2 Sampling Report .. 16
 3.3 Daily PM Results from the Monitoring Sites ... 18
 3.4 Conclusion ... 19

References .. 20
Acknowledgments

This project is funded by

- NSW Environmental Protection Authority (EPA)
- NSW Office of Environment & Heritage
- NSW Department of Health
- CSIRO Climate & Atmosphere Theme
- ANSTO

The project is supported by the Project Management Team of Matt Riley, Yvonne Scorgie, Kelly Rivett, Judy Greenwood, Ann Louise Crotty, Leanne Graham, Wayne Smith, John Kirkwood, Keith Craig, Mark Hibberd, Melita Keywood, David Cohen, and Ed Stelcer.

We acknowledge the contributions of the CSIRO project support team of Kate Boast and Paul Selleck, the ANSTO project support team of David Garton and Armand Atanacio, and OEH project field staff Scott Thompson and Stuart Mason.

Support provided by Orica Limited for the study by facilitating sampling at Stockton Air Quality Monitoring Site and making available monitoring records from this site is gratefully acknowledged.

Support extended by CSIRO Energy Centre for the establishment of study samplers on the grounds of the centre in Mayfield is acknowledged.
1 Introduction

The Lower Hunter Particle Characterisation Study (LHPCS) was initiated in 2013 and is being undertaken to provide the EPA and communities in the Lower Hunter with scientific information about the composition and likely sources of fine airborne particles in their local environment. The study represents a collaboration between the NSW Environment Protection Authority (EPA), the NSW Office of Environment and Heritage (OEH), NSW Health, the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Nuclear Science and Technology Organisation (ANSTO). Following the establishment of governance arrangements and an independently peer reviewed study design, the one year airborne particle sampling program commenced on 2 March 2014.

This 1st Progress Report outlines the design of the project, the methodology, the commissioning phase and documents the samples collected during the first quarter (Autumn period) of the one year sampling program.

1.1 Study Objectives

The Lower Hunter Particle Characterisation Study aims to determine the composition of PM$_{2.5}$ and PM$_{10}$ air particles, and to identify major sources contributing to PM$_{2.5}$ and PM$_{10}$ concentrations in the region to inform EPA’s control programs1.

Specific sub-objectives are as follows:

- Determine the composition and major sources contributing to PM$_{2.5}$ concentrations at sites representative of regional population exposures.
- Establish airborne particle composition and major sources contributing to PM$_{2.5}$ and PM$_{10}$ concentrations at sites indicative of population exposures in areas near to the Newcastle Port.

1.2 Background

Responding to community concern about particle pollution in the Lower Hunter region of NSW, the Minister for the Environment met with community representatives in April 2013 and gave in-principle support for a study into the major components and sources of fine particles. This particle characterisation study was intended to focus on fine particles as PM$_{2.5}$, which is the metric the World Health Organisation recommends for management of the health risks of particle pollution. On 10 July the Minister announced commencement of the study.

A similar study was completed for the Upper Hunter. The Upper Hunter Valley Particle Characterisation Study was commissioned by the Office of Environment and Heritage (OEH) and NSW Health and carried out by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Nuclear Science and Technology Organisation (ANSTO). This study, successfully completed in September 2013, provided valuable information on the composition and sources of PM$_{2.5}$ concentrations in Muswellbrook and Singleton (Hibberd et al., 2013).

1 PM$_{2.5}$ and PM$_{10}$ refer to airborne particulate matter with an equivalent aerodynamic diameter of 2.5 micrometres and 10 micrometres respectively.
NSW Environment Protection Authority (EPA) consulted with the Newcastle community on 13 August about the scope of the Lower Hunter particle characterisation study. At the request of the community, the EPA expanded the study scope to include sampling and characterisation of PM$_{10}$ in addition to PM$_{2.5}$.

EPA is the sponsor and primary funder of the study, with the Climate and Atmospheric Sciences (CAS) Branch of OEH directing and managing the study and NSW Health to provide guidance and support for the initiative. For consistency with OEH’s ambient air quality monitoring network and the Upper Hunter study, the study will be referred to as the Lower Hunter Particle Characterisation Study (LHPCS).

The study is being undertaken as a collaborative project by selected research partners to maximise opportunities for co-investment. CSIRO and ANSTO were chosen as the most suitable research partners based on their expertise in the field, prior experience and demonstrated performance on the Upper Hunter Valley Particle Characterisation Study, and their track-record for co-investment and collaborative research.

1.3 Study Scope and Overview

The study comprises PM$_{2.5}$ sampling at four sites in the Lower Hunter region over a one year period, including two sites representative of wider community exposures in the region (Newcastle and Beresfield) and two sites indicative of public exposures in areas neighbouring the Newcastle Port (Stockton and Mayfield). PM$_{10}$ sampling and analysis is also being undertaken for the Stockton and Mayfield sites in response to community requests that PM$_{10}$ be addressed.

Existing or planned ambient air quality monitoring sites were preferred locations since they allow timely establishment of study sampling sites. These sites also have continuous particulate matter and gaseous monitoring records and meteorological data that can be used during the source apportionment analysis. Selected study sites coincide with the existing OEH Beresfield Air Quality Monitoring (AQM) Station, the OEH Newcastle AQM Station, the Orica Fullerton Street Stockton AQM Station, and the CSIRO Energy Centre AQM Station in Mayfield West. Sampling is being conducted over the period 1 March 2014 to 28 February 2015.

A summary of the monitoring sites, equipment and filter types and sampling schedules for the study is given in Table 1.

Table 1 LHPCS monitoring sites, equipment, filter types and sampling schedule

<table>
<thead>
<tr>
<th>MONITORING SITE</th>
<th>EQUIPMENT, SIZE FRACTION AND FILTER TYPE</th>
<th>SAMPLING SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEH Newcastle AQM Station</td>
<td>Two ANSTO Aerosol Sampling Program (ASP) PM$_{2.5}$ cyclone samplers – one collecting on Teflon filter and one on a quartz filter.</td>
<td>1-in-3 days</td>
</tr>
<tr>
<td>OEH Beresfield AQM Station</td>
<td>Two ANSTO ASP PM$_{2.5}$ samplers – one collecting on Teflon filter and one on a quartz filter.</td>
<td>1-in-3 days</td>
</tr>
<tr>
<td>CSIRO Energy Centre (Mayfield) AQM Station</td>
<td>One GENT Stacked Filter Unit (SFU) sampling ‘coarse’ (PM${2.5-10}$) particles on a Nuclepore filter and ‘fine’ (PM${2.5}$) particles on a quartz filter. One ANSTO ASP PM$_{2.5}$ sampler collecting fine particles on a Teflon filter to be relocated to this site from the nearby Steel River AQM station. (Separately funded program, with sampling done by OEH, analysis by ANSTO, and funded by the EPA.)</td>
<td>1-in-3 days</td>
</tr>
<tr>
<td>Orica Fullerton Street Stockton AQM Station</td>
<td>One GENT SFU sampling ‘coarse’ (PM${2.5-10}$) particles on a Nuclepore filter and ‘fine’ (PM${2.5}$) particles on a quartz filter. One ANSTO ASP PM$_{2.5}$ cyclone sampler collecting fine particles on a Teflon filter already in operation at this site. (Separately funded program with sampling and analysis undertaken by ANSTO, funded by Orica).</td>
<td>1-in-3 days</td>
</tr>
</tbody>
</table>
Sample analysis for the PM$_{2.5}$ component will include Ion Beam Analysis (IBA) techniques and Ion Chromatography (IC) on the Teflon filters and organic and elemental carbon (OC/EC) analysis using a DRI Model 2001A Thermal-Optical Carbon Analyzer for the quartz filters.

The use of ANSTO ASP PM$_{2.5}$ cyclone samplers at each of the four sites provides the basis for gravimetric analysis to determine PM$_{2.5}$ concentrations. Combining results from the gravimetric analysis of the coarse and fine fractions from the GENT SFU sampling will allow PM$_{10}$ concentrations to be determined.

Chemical analysis of the PM$_{2.5-10}$ component will include IBA and IC on the Nuclepore filters in addition to black carbon (BC) being determined through the use of the Laser Integrated Plate Method (LIPM), which is a light absorption technique. Given that organic carbon is primarily in the fine fraction, the use of quartz filters to support OC/EC analysis of the coarse fraction is not required.

The chemical composition of all the samples will subsequently be input into receptor modelling using a mathematical technique called Positive Matrix Factorisation (PMF) to identify factors and the contribution of each factor to the total PM$_{2.5}$ and PM$_{10}$ concentration. The key source of emissions in each factor will be identified using a range of information including source characteristics, wind data and the pattern of seasonal variation in the factor.
2 Study Design

2.1 OEH Regional Air Quality Monitoring Stations

OEH operates air quality monitoring stations at Beresfield, Newcastle and Wallsend to characterise regional air quality. PM$_{10}$, PM$_{2.5}$, ozone (O$_3$), oxides of nitrogen (NO$_x$), sulfur dioxide (SO$_2$), carbon monoxide (CO) and meteorology (wind speed, wind direction, air temperature and relative humidity) are continuously measured at these stations (Table 2).

<table>
<thead>
<tr>
<th>Monitoring Site</th>
<th>MGA X (km)</th>
<th>MGA Y (km)</th>
<th>O3</th>
<th>NO</th>
<th>NO$_2$</th>
<th>NO$_x$</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>SO$_2$</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beresfield</td>
<td>374.534</td>
<td>6370.275</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Newcastle</td>
<td>383.917</td>
<td>6355.512</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wallsend</td>
<td>375.529</td>
<td>6359.445</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ indicates that the pollutant is monitored at the monitoring station; MGA: Map Grid of Australia (GDA94)
TEOM – tapered element oscillating microbalance (continuous monitoring instrument)
BAM – beta attenuation monitor (continuous monitoring instrument)
(a) Beresfield PM$_{2.5}$ TEOM replaced with a BAM on 24 February 2012
(b) Wallsend PM$_{2.5}$ TEOM replaced with a BAM on 29 November 2012
(c) PM$_{2.5}$ BAM monitoring was commissioned at the Newcastle Air Quality Monitoring Station in December 2013.

Annual time series of PM$_{10}$ and PM$_{2.5}$ for the period October 2012 – September 2013 are shown in Figure 1 and Figure 2. Data are included from the OEH monitoring stations and the site at Stockton run by Orica.

The figures show stronger regional variations in PM$_{10}$ than PM$_{2.5}$ concentrations. The PM$_{10}$ and PM$_{2.5}$ levels recorded at Stockton were generally higher and characterised by some localised peaks not evident at the regional air quality monitoring stations. Peaks in PM$_{10}$ and PM$_{2.5}$ levels recorded at the Stockton monitoring station have been noted to coincide with north-easterly (onshore) airflows and westerly and north-westerly (off-shore) airflows (TAS, 2013).

PM$_{2.5}$ levels measured at the Stockton monitoring station are comparable to levels measured at the OEH Beresfield and Wallsend stations for much of the year, with average and median levels being in the same range. Higher peaks were however observed to occur on occasion at Stockton resulting in 3 days exceeding the national advisory reporting standard of 25µg/m3 compared to 1 day at the OEH stations.

The reasons for higher PM$_{10}$ concentrations and marginally higher PM$_{2.5}$ levels being recorded at the Stockton monitoring station are not currently known. Potential reasons may include: greater marine aerosol (sea salt) contribution due to the proximity of Stockton to the coast; proximity to industrial activity on Kooragang Island; and different configuration or models of monitoring instrumentation in use. Procedures for dealing with negative data and data averaging may also be different to those implemented by OEH. This will be investigated further during the course of the LHPCS.
2.1.1 COMPOSITION AND SOURCES OF PM$_{2.5}$

ANSTO has been conducting PM$_{2.5}$ characterisation at several east coast sites since 1998, including several sites within NSW and a background (pristine environment) site at Cape Grim in Tasmania. One of the NSW sites is located within the Newcastle LGA at Mayfield. Key sources of long-term average PM$_{2.5}$ concentrations (1998-2008) determined by ANSTO are shown in Figure 3. The following sources were identified: ‘Secondary Sulfate’ formed from reactions of sulfur dioxide with ammonium in the atmosphere, ‘Auto’ referring to motor vehicle emissions, ‘Smoke’ for smoke emissions, ‘Sea’ representing fresh sea salt, ‘Soil’ indicating soil dust and ‘Industry’ emissions. Sources of sulfur dioxide emissions in the region include coal-fired power generation, industry, vehicles and shipping.
The ANSTO ASP PM$_{2.5}$ sampler located at Mayfield was relocated to the nearby Steel River monitoring station in 2012. Sampling and analysis at the Steel River monitoring site is funded by EPA for two years, with sampling being undertaken by OEH and analysis by ANSTO.

![Figure 3 Percentage source contributions to PM$_{2.5}$ concentrations at Mayfield (1998-2009)](image)

2.2 Sampling Sites

Site selection is an important component of the design of the study with emphasis placed on representative sampling locations with characteristics that match the study objectives (refer to Section 1.1). Reference was made to information from emissions inventories, meteorology data, and available air quality monitoring and airborne particle speciation data to determine candidate locations for sampling. This information was used in conjunction with the program objectives to determine appropriate site selection. Furthermore, sampling sites identified to meet the study objectives were selected to coincide with existing ambient air quality monitoring sites where possible. This was to ensure timely establishment of sites and enable reference to longer-term, continuous particulate matter and gaseous monitoring records and to detailed meteorological monitoring records from such sites.

The study sampling sites selected are as follows (Figure 4):

- OEH Newcastle AQM Station (the ‘Newcastle site’),
- OEH Beresfield AQM Monitoring Station (the ‘Beresfield site’),
- Orica Fullerton Street Stockton AQM Station (the ‘Stockton site’), and
- CSIRO Energy Centre Meteorological Monitoring Station in Mayfield (the ‘Mayfield site’)

The Steel River Industrial Park Air Quality Monitoring Station was initially selected as a potential sampling site near the Newcastle Port. Due however to the proximity of this station to a major road preference was given for the location of the fourth site at CSIRO Energy Centre located in Mayfield West, a short distance from the Steel River monitoring station. Furthermore, the CSIRO Energy Centre site had been selected as one of three preferred sites for the Newcastle Local Air Quality Monitoring Network due to be established during the latter half of 2014. The Orica Fullerton Road Stockton monitoring site is another of the selected sites for this network.
The manner in which each site contributes to the study objectives being met is explained below and further contextual information on each site provided.

The Newcastle and Beresfield sites were selected as sampling sites representative of more general population exposures within the Lower Hunter. The Newcastle site is located at the Newcastle athletics track, off Smith Street, Newcastle. It is situated in a residential area, next to a school and close to the commercial centre of Newcastle and is at an elevation of 5m. The site is not located in proximity to any major roads, nor any other significant local emission sources. The air quality monitoring at this site was commissioned in November 1992, with PM$_{10}$, NO, NO$_2$, NO$_x$, SO$_2$, CO and O$_3$ being continuously measured, in addition to wind speed and direction, air temperature and relative humidity. PM$_{10}$ is measured using a TEOM. Although PM$_{2.5}$ has not previously been measured at the site, a continuous monitor (BAM) was installed at the site in December 2013 prior to the commencement of the sampling program for this study. (BAMs are in use for PM$_{2.5}$ monitoring across the OEH NSW Air Quality Monitoring Network).

The Beresfield site is located in Francis Greenway High School, on Lawson Avenue, Beresfield (Figure 5). It is situated in a residential area north-west of Newcastle and is at an elevation of 14 metres. Air quality monitoring was commissioned at this site in May 1993, with PM$_{10}$, PM$_{2.5}$, NO, NO$_2$, NO$_x$, CO and O$_3$ being continuously measured, in addition to wind speed and direction, air temperature and relative humidity. SO$_2$ is not measured at this site. PM$_{10}$ is measured using a TEOM, with PM$_{2.5}$ measured with a BAM. The Beresfield site is located about 300 metres from the main railway line along which diesel-electric trains are in use, including passenger and freight trains and coal trains transporting coal from mines in the Hunter to the Newcastle Port for shipping.

The Newcastle and Beresfield sites were selected over the Wallsend Air Quality Monitoring Station for a number of reasons. Higher PM$_{10}$ concentrations are usually recorded at Newcastle and Beresfield, with higher PM$_{2.5}$ concentrations also observed at Beresfield when compared to Wallsend. Airflow patterns at

\[\text{Figure 4 Overview of sampling sites for Lower Hunter Particle Characterisation Study}\]
Newcastle and Beresfield are more representative of the greater Lower Hunter region, whereas airflow at Wallsend is significantly influenced by the local terrain. The Newcastle site is in an area characterised by greater population densities compared to Wallsend. The location of the Beresfield site relative to the Newcastle site will support the evaluation of the change in contribution of the sea salt component of PM$_{2.5}$ with increasing distance from the coast.

The Stockton and Mayfield sites were selected to represent residential areas situated in proximity to the Newcastle Port. The Stockton site is situated between the Stockton residential area and the northern arm of the Hunter River, and across the river from industries situated on Kooragang Island (Figure 6). Being situated on a peninsula, the Stockton site is also in close proximity to the ocean. Air quality monitoring was...
commissioned at this site in October 2012, with PM$_{10}$, PM$_{2.5}$, NO$_2$, NO$_x$ and NH$_3$ being continuously measured, in addition to wind speed and direction. PM$_{10}$ is continuously measured using a TEOM, with PM$_{2.5}$ measured with a BAM. There is also an existing ANSTO PM$_{2.5}$ ASP sampler located on the roof of the Stockton Air Quality Monitoring Station, which is being used as part of the LHPC Study.

The Mayfield site at CSIRO Energy Centre is situated within the Steel River Estate at 10 Murray Dwyer Circuit, Mayfield West. The site is located south of the south arm of the Hunter River in close proximity to the Mayfield West residential areas and industrial operations at the Newcastle Port including the coal terminals on Kooragang Island. Although no air quality monitoring has previously been undertaken at the site, a meteorological station was in operation and the site is situated near to the Steel River Air Quality Monitoring Station at which TSP and PM$_{10}$ is sampled on a 1-in-6 day schedule and SO$_2$ and NO$_x$ continuously monitored. The existing ANSTO PM$_{2.5}$ ASP sampler located at the Steel River monitoring station was relocated to the CSIRO Energy Centre site for inclusion in the LHPC Study.

The CSIRO Energy Centre site in Mayfield and the Stockton Air Quality Monitoring Station have been selected as locations for the establishment of air quality monitoring stations as part of the planned Newcastle Local Air Quality Monitoring Network being established during the latter half of 2014.

2.3 Sampling Equipment

Two types of samplers were selected for use in the study:

- **GENT Stacked Filter Units (SFUs) sampling ‘coarse’ (PM$_{2.5-10}$) and ‘fine’ (PM$_{2.5}$) particles**
- **ANSTO’s low volume Aerosol Sampling Program (ASP) PM$_{2.5}$ cyclone samplers**

GENT Stacked Filter Units

The GENT stacked filter unit (SFU) sampler (Figure 7) is capable of collecting air particulate matter samples in coarse (2.5–10 µm) and fine (<2.5 µm) size fractions. The SFU includes a holder for two sequential filters. The initial filter is an 8 µm pore 47 mm Nuclepore filter and the second filter is an 0.4 µm pore Nuclepore filter. At a flow rate of 16 litres/minute, the SFU acts as a dichotomous sampler, with the flow through the 8 µm pores resulting in the collection of ~2.2 µm particles with 50% efficiency. The <2.2 µm particles are then collected on the 0.4 µm filter (Hopke *et al.*, 1997).

GENT SFU samplers have been used to support ion beam analysis and particle characterisation in a number of published studies (Cohen *et al.*, 2004, 2012; Santoso *et al.*, 2008).

ASP PM$_{2.5}$ Sampler

The ANSTO built ASP sampling unit (Figure 7) is a PM$_{2.5}$ cyclone type sampler based on the US EPA IMPROVE system used across North America in their National Parks air monitoring program (Cohen *et al.*, 1996; Malm *et al.*, 1994). The unit was specifically designed for use with multi-elemental ion beam analysis methods. The cyclone operates at a flow rate of 21 L min$^{-1}$ using a mass flow controller which results in a 2.5 µm particle size cut-off. The particles are most typically collected on a 25mm diameter thin stretched Teflon filter masked to 17 mm diameter to increase sample thickness and improve deposit uniformity.

ANSTO ASP PM$_{2.5}$ samplers are currently being used by ANSTO for the on-going Australian East Coast particle sampling and characterisation project (Section 2.1.1) and were successfully used in the Upper Hunter Valley Particle Characterisation Study (Hibberd *et al.*, 2013).

Figure 8 and Figure 9 show the Newcastle monitoring station before and after installation of the ASP samplers, and Figure 10 shows the GENT and ASP samplers on the roof of the Stockton Air Quality Monitoring Station, with a view across the river from this site to Kooragang Island.
Figure 7 Left – GENT sampler installed at the Mayfield site; Right – Detail of an ASP sampler at Beresfield

Figure 8 OEH Newcastle Air Quality Monitoring Station before installation of the LHPCS samplers

Figure 9 ASP samplers on the roof of the OEH Newcastle Air Quality Monitoring Station
Filter Types

Appropriate filter types were selected based on the analytical techniques to be applied in the study, which include Ion Beam Analysis (IBA) techniques, Ion Chromatography (IC), organic and elemental carbon (OC/EC) analysis using a DRI Model 2001A Thermal-Optical Carbon Analyzer, and the Laser Integrated Plate Method (LIPM) for measuring black carbon (BC). Teflon and Nuclepore filters are appropriate for IBA, LIPM and IC analysis, whereas quartz filters are required for OC/EC with the DRI Analyser.

Samplers and types of filters being used in the LHPCS are as follows:

- Two purposely installed ANSTO ASP PM$_{2.5}$ cyclone samplers at the **Newcastle site**, one collecting particles on a Teflon filter (for IBA, LIPM and IC analysis) and the other on a quartz filter (for EC/OC analysis).

- Two purposely installed ANSTO ASP PM$_{2.5}$ cyclone samplers at the **Beresfield site**, one collecting particles on a Teflon filter (for IBA, LIPM and IC analysis) and the other on a quartz filter (for EC/OC analysis).

- One GENT SFU at the **Mayfield site**, collecting PM$_{2.5-10}$ particles on a Nuclepore filter (for IBA, LIPM and IC analysis) and PM$_{2.5}$ particles on a quartz filter (for EC/OC analysis).

- Relocation of the existing ANSTO ASP PM$_{2.5}$ sampler collecting particles on Teflon filters from the Steel River monitoring station to the **Mayfield site**. Results from the IBA conducted on these filters by ANSTO (funded by EPA) will be integrated into the study, with further (IC) analysis conducted on the filters by CSIRO.

- One GENT SFU at the **Stockton site**, collecting PM$_{2.5-10}$ particles on a Nuclepore filter (for IBA, LIPM and IC analysis) and PM$_{2.5}$ particles on a quartz filter (for EC/OC analysis).

- Integration of results from the IBA conducted on the ASP PM$_{2.5}$ sampler Teflon filters from the **Stockton site** filters by ANSTO (funded by Orica) into the study, with further (IC) analysis conducted on the filters by CSIRO.

Field Blanks

Quartz field blanks are being used every 6 days for the ASP PM$_{2.5}$ sampler and every 12 days for the GENT stacked filter, with the blanked values propagated in the analysis.
2.4 Analysis Techniques

The same analytical techniques as were implemented during the Upper Hunter Valley Particle Characterisation Study are planned for implementation within the LHPCS. Descriptions of these techniques were given by Hibberd et al. (2013) and are summarised in the following sections.

2.4.1 Mass measurements

The mass of PM$_{2.5}$ on the sample filters will be determined gravimetrically. The filters will be weighed before and after the sampling period to determine the particulate mass collected and then divided by the total volume of air that passed through the filter to obtain the PM$_{2.5}$ concentration. The weighing will be performed under controlled temperature (22 ± 2°C) and relative humidity conditions. Relative humidity conditions of 50±10% were specified for use in the Upper Hunter Valley Fine Particle Characterisation Study. However, the contribution of liquid water to the mass on the filter is expected to be higher in the LHPCS than was evident for the Upper Hunter Valley Fine Particle Characterisation Study due to the proximity of the LHPCS sampling sites to the coast. The study team will therefore investigate whether weighing should be done at lower relative humidity, and will record the actual relative humidity in the weighing environment. The contribution of liquid water will therefore be more explicitly investigated and reported in the study report. The use of ANSTO ASP PM$_{2.5}$ cyclone samplers at each of the four sites provides the basis for gravimetric analysis to determine PM$_{2.5}$ concentrations. Combining results from the gravimetric analysis of the coarse and fine fractions from the GENT SFU sampling will allow PM$_{10}$ concentrations to be determined. All filters will be neutralized prior to being weighed.

2.4.2 Ion beam analysis (IBA) techniques

The Teflon filters will be analysed non-destructively on the ANSTO STAR 2MV accelerator using nuclear IBA techniques including:

- Proton induced X-ray emission (PIXE) – for analysis of elements from aluminium to lead in concentrations from a few ng/m3 upwards, as described in Cohen (1993).
- Proton induced gamma-ray emission (PIGE) – for analysis of light elements such as fluorine and sodium in concentrations above 100 ng/m3, as described in Cohen (1998).
- Proton elastic scattering analysis (PESA) – for analysis of hydrogen at levels down to 20ng/m3, as described in Cohen (1996).

The elements whose concentrations are to be determined are:

<table>
<thead>
<tr>
<th>Element</th>
<th>Concordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen (H)</td>
<td>Chromium (Cr)</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>Manganese (Mn)</td>
</tr>
<tr>
<td>Aluminium (Al)</td>
<td>Iron (Fe)</td>
</tr>
<tr>
<td>Silicon (Si)</td>
<td>Cobalt (Co)</td>
</tr>
<tr>
<td>Phosphorous (P)</td>
<td>Nickel (Ni)</td>
</tr>
<tr>
<td>Sulfur (S)</td>
<td>Copper (Cu)</td>
</tr>
<tr>
<td>Chlorine (Cl)</td>
<td>Zinc (Zn)</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>Selenium (Se)</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>Bromine (Br)</td>
</tr>
<tr>
<td>Titanium (Ti)</td>
<td>Lead (Pb)</td>
</tr>
<tr>
<td>Vanadium (V)</td>
<td></td>
</tr>
</tbody>
</table>

2.4.3 Ion chromatography

IC analysis will be conducted by CSIRO. A 6.25 cm2 portion of each quartz filter will be analysed for major water soluble ions by suppressed ion chromatography (IC) and for anhydrous sugars including levoglucosan by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The filter portions will be extracted in 10 ml of 18.2 mΩ de-ionized water. The sample will then be preserved using 1% chloroform.

Teflon filters will also be analysed by CSIRO for water soluble ions by IC after IBA has been carried out by ANSTO. The Teflon filters will first be wetted with 100 μl of methanol, extracted in 5 ml of 18.2 mΩ de-ionized water and then preserved with 1% chloroform.

Anion and cation concentrations will be determined with a Dionex ICS-3000 reagent free ion chromatograph (Hibberd et al., 2013). Anions will be separated using a Dionex AS17c analytical column (2 x 250 mm), an ASRS-300 suppressor and a gradient eluent of 0.75 mM to 35 mM potassium hydroxide. Cations will be separated using a Dionex CS12a column (2 x 250 mm), a CSRS-300 suppressor and an isocratic eluent of 20 mM methanesulfonic acid.

Anhydrous sugar concentrations will be determined by HPAEC-PAD with a Dionex ICS-3000 chromatograph with electrochemical detection (Hibberd et al., 2013). The electrochemical detector utilizes disposable gold electrodes and is operated in the integrating (pulsed) amperometric mode using the carbohydrate (standard quad) waveform. Anhydrous sugars are separated using a Dionex CarboPac MA 1 analytical column (4 x 250 mm) with a gradient eluent of 300 mM to 550 mM sodium hydroxide.

The species whose concentrations are to be determined are:

<table>
<thead>
<tr>
<th>Chloride (Cl$^-$)</th>
<th>Methanosulfonate (MSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (NO$_3^-$)</td>
<td>Sodium (Na$^+$)</td>
</tr>
<tr>
<td>Sulfate (SO$_4^{2-}$)</td>
<td>Ammonium (NH$_4^+$)</td>
</tr>
<tr>
<td>Oxalate (C$_2$O$_4^{2-}$)</td>
<td>Magnesium (Mg$^{2+}$)</td>
</tr>
<tr>
<td>Formate (HCOO$^-$)</td>
<td>Calcium (Ca$^{2+}$)</td>
</tr>
<tr>
<td>Acetate (CH$_3$COO$^-$)</td>
<td>Potassium (K$^+$)</td>
</tr>
<tr>
<td>Phosphate (PO$_4^{3-}$)</td>
<td>Levoglucosan (C6H${10}$O$_5$, an anhydrous sugar - woodsmoke tracer)</td>
</tr>
</tbody>
</table>

Levoglucosan and mannosan are unique tracers for the combustion of cellulose found in trees and plants (Iinuma et al., 2007). The ratio of levoglucosan to mannosan is an indication of the type of wood combusted. Potential limitations in the use of levoglucosan as a marker species for wood smoke burning arise from its limited atmospheric lifetime (Hoffmann et al., 2009; Hennigan et al., 2010). Options to include other biomass markers will therefore be investigated for inclusion in the chemical analysis.

2.4.4 Organic carbon (OC) and Elemental carbon (EC) analysis

Different sources emit different types of carbon. Thus the carbon on the samples will be analysed to obtain the two separate components – organic carbon and elemental carbon. The latter is approximately equivalent to black carbon, which is measured using light absorption techniques (US EPA, 2012). The sources of carbon (OC and EC) include a wide range of types of combustion.

Elemental and organic carbon analysis will be performed using a DRI Model 2001A Thermal-Optical Carbon Analyzer following the IMPROVE-A temperature protocol (Chow et al., 2007). Laser reflectance will be used to correct for charring, since reflectance has been shown to be less sensitive to the composition and extent of primary organic carbon (Hibberd et al., 2013). Prior to analysis of filter samples, the sample is baked in an oven to 910°C for 10 minutes to remove residual carbon. System blank levels will then be tested until < 0.20 μg C cm$^{-2}$ is reported (with repeat oven baking if necessary). Twice daily calibration checks will be
performed to monitor possible catalyst degeneration. The analyser is reported to effectively measure carbon concentrations between 0.05 – 750 µg C cm⁻², with uncertainties in OC and EC of ± 10% (Hibberd et al., 2013).

Use of the IMPROVE-A temperature protocol provides four OC fractions, namely OC1 at 140°C, OC2 at 280°C, OC3 at 480°C, and OC4 at 580°C. As in the Upper Hunter Valley Fine Particle Characterisation Study, the variations in the proportions of the OC fractions will assist in ascribing Positive Matrix Factorisation factors for both local domestic woodheater smoke and emissions from more distant planned burns and bushfires, the latter having much lower levoglucosan levels.

2.4.5 Black carbon (BC) analysis

Chemical analysis of the coarse (PM₂.₅₋₁₀) component measured at the Mayfield and Stockton sites will include IBA and IC on the Teflon filters in addition to black carbon being determined using the Laser Integrated Plate Method (LIPM). (Given that organic carbon is primarily in the fine fraction, the use of quartz filters to support OC/EC analysis is not required for the coarse fraction.)

For LIPM measurements, light from a HeNe laser (wavelength 633 nm) is diffused and collimated to give a uniform beam across the Teflon filter. The transmitted signal intensity is measured using a photodiode detector on each filter before and after exposure. The BC concentration is estimated from these two transmission measurements assuming a mass absorption coefficient value of 7 m² g⁻¹ for carbon particles. Full details can be found in a publication by Taha et al. (2007).

2.4.6 Positive matrix factorisation (PMF) and Source Apportionment

The chemical composition of all the samples will be input into receptor modelling using a mathematical technique called Positive Matrix Factorisation (PMF) to identify factors and the contribution of each factor to the total PM₂.₅ and PM₁₀ concentration.

PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data into two matrices – factor contributions and factor profiles. These factors are then interpreted to determine what sources are represented by these factors. This is done using measured source profile information, wind direction analysis, and emissions inventories (Norris et al., 2008). The method is described in greater detail by Paatero (1997). PMF is widely used in air pollution studies for source apportionment, including in Australia (e.g. Hibberd et al., 2013; Chan et al., 2008; Cohen et al., 2011; Cohen et al., 2012; Belis et al., 2013).

In the study, the chemical composition data of all samples from each site will be analysed collaboratively by CSIRO and ANSTO using PMF. Both the US EPA developed software package EPA PMF 3.0 (Norris et al., 2008) and the PMF2 DOS version (Paatero, 2004a, b) will be used. Once factors are obtained, further analysis will be undertaken to identify the sources in each factor. This uses information about known sources and other knowledge of atmospheric chemistry as well as wind sector and seasonal analysis to identify the most likely source of emissions for each factor and hence the contribution that each source makes to the total PM₂.₅ or PM₁₀ concentrations. Previous studies have shown that the more robust results are derived by including all the samples in the PMF analysis and using the time series of the factor contributions to assist in source identification (Hibberd et al., 2013; Cohen et al., 2011; Cohen et al., 2012).

2.5 Supporting Analysis

2.5.1 Emission Events Log and Air Quality Monitoring Data Analysis

An emissions events log is being maintained recording any significant local releases or regional emission events (e.g. large bushfires and dust storms) observed during the sampling period for use during the source apportionment analysis.
Trend analysis will be conducted on the continuously monitored PM$_{10}$, PM$_{2.5}$ and gaseous pollutant concentrations from the Newcastle, Beresfield, WallSEND and Stockton monitoring stations (and from other monitoring stations with available data). Meteorological data recorded at the monitoring stations will similarly be subject to detailed analysis to support source apportionment.

2.5.2 Case Study Analysis

In addition to the above PMF analysis and source apportionment, several case study days will be identified from the data including both high PM$_{2.5}$ and PM$_{10}$ days (with the decision on the days to be made in discussion with the Project Management Team). These case study days will be the subject of further detailed analysis using a number of techniques with the aim of reducing uncertainties in the source apportionment and, for some high PM$_{10}$ days, to identify the causes of peak events. The techniques will include chemical transport modelling using CSIRO’s CTM (Chemical Transport Model) for the case study days to assist in understanding the origins of the air masses generating secondary particles identified in the PMF.

Event analysis will also include material balance comparisons, including comparisons between co-measured species, and predicted versus measured species (e.g. ammonium). Ion balances will be constructed to verify the data and determine the degree of neutralisation of acid aerosols by ammonia.

2.5.3 Wind sector analysis

To determine the directions from the sampling site which are likely to include the sources of the factors (identified in the PMF), the conditional probability function (CPF) technique will be used. This couples the source contribution estimates from PMF with the wind directions measured at the sampling site (e.g. Kim and Hopke, 2004). The CPF estimates the probability that a given source contribution from a given wind direction will exceed a pre-determined criterion. It is defined as

\[
CPF = \frac{m\Delta \theta}{n\Delta \theta} \quad (1)
\]

where $m_{\Delta \theta}$ is the number of occurrences from wind sector $\Delta \theta$ (typically about 20°) that exceed the criterion and $n_{\Delta \theta}$ is the total number of data from the same wind sector. Wind speeds below 0.5 m s$^{-1}$ are excluded from the analysis as they are considered to represent calm conditions.

Daily fractional mass contribution from each source will be used rather than the absolute source contribution. The criterion is typically set as the upper 25th percentile of the fractional contribution from each source. The same daily fraction is assigned to each hour of a given day to pair with the hourly wind data. This is a limitation of the method due to the sampling being 24-hour samples. However, using 24-hour average wind directions to match the sampling period for the PM produces poorer results from the CPF analysis than using the method outlined above because of the information lost by averaging the wind data.
3 Report on March-May 2014 Sampling

3.1 Commissioning

Monthly meetings of the Project Management Team have been held since October 2013 to coordinate design and roll-out of the study. These monthly meetings will continue until the study is finalised.

The purpose and design of the study was presented to the independent Air Pollution Expert Advisory Committee in December 2013. The study design was peer reviewed by two independent experts prior to being finalised and the one year sampling program initiated.

The sampler installation was undertaken during February 2014 with some test samples collected from 22 February 2014 and all samplers operating for the commencement of the study on 2 March 2014.

An initial audit of procedures, documentation, instrument siting, and filter changing was undertaken on 24 March 2014. Overall it was concluded that the procedures reviewed were fit for purpose with minor amendments to sampler placement recommended in some cases to ensure compliance with Australian Standards. The recommendations from the audit report have been implemented, principally clarifications and correction of typographical errors in the documentation of procedures for filter collection and shipping, and small adjustments to sampler positioning at Stockton.

Power outages and timing errors led to some samples at Mayfield and Stockton not being collected in mid-March, with resultant sample losses indicated in the subsequent subsection.

There have been no significant issues with filter shipping. Analysis of filter samples has commenced but no results are ready to be reported.

A briefing of the Newcastle Community Consultative Committee on the Environment (NCCCE) on the study was held on 9 April 2014, with study progress reported to the NCCCE on a monthly basis.

3.2 Sampling Report

The LHPCS aims to achieve a 95% valid sample collection rate. Table 3 lists the status of the sample collection for the first 3 months of the study, with the sample collection rates achieved for each sampler-filter train noted. The missing samples were due to power outages and timing errors as noted above. Contingency measures have since been implemented to reduce the potential for these disruptions so as to maximise sample collection rates.

Overall, a sample collection rate of 98% was achieved during the March to May 2014 (Autumn) period.
Table 3 Status of sample collection

<table>
<thead>
<tr>
<th>SAMPLE DATE</th>
<th>BERESFIELD PM$_{2.5}$</th>
<th>NEWCASTLE PM$_{2.5}$</th>
<th>MAYFIELD PM${COARSE}$ & PM${2.5}$</th>
<th>STOCKTON PM${COARSE}$ & PM${2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASP TEFLOMN</td>
<td>ASP QUARTZ</td>
<td>ASP TEFLOMN</td>
<td>ASP TEFLOMN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GENT NUCLEPORE PM$_{COARSE}$</td>
<td>GENT NUCLEPORE PM$_{COARSE}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GENT QUARTZ PM$_{2.5}$</td>
<td>GENT QUARTZ PM$_{2.5}$</td>
</tr>
<tr>
<td>02/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>05/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>08/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>14/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>17/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>20/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>23/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>26/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>29/03/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>01/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>04/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>07/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16/04/2014</td>
<td>✓ C</td>
<td>✓ C</td>
<td>✓ C</td>
<td>✓ C</td>
</tr>
<tr>
<td>19/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>22/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>25/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>28/04/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>01/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>04/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>07/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>19/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>22/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>25/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>28/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>31/05/2014</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Sample collection rate

<table>
<thead>
<tr>
<th></th>
<th>100%</th>
<th>100%</th>
<th>100%</th>
<th>100%</th>
<th>90%</th>
<th>97%</th>
<th>97%</th>
<th>94%</th>
<th>100%</th>
<th>100%</th>
</tr>
</thead>
</table>

Notes: ✓ - Filter sample collected; x - Filter sample not collected; C – control (unexposed) filter included
3.3 Daily PM Results from the Monitoring Sites

Figure 11 shows the time series of 24-hour average PM$_{2.5}$ concentrations measured at the Newcastle, Beresfield and Stockton monitoring sites using the standard TEOM and BAM equipment for the first three months of the study. The green bars highlight the days when 1-in-3-day sampling was carried out for the current study. It shows that these are representative of the full period, including days with both high and low concentrations. Stockton data for the first half of March has not been included because of quality assurance issues (the data showed negative concentrations). The figure also shows data quality issues at Stockton in the first half of April with significantly lower values than at the other two sites.

The average PM$_{2.5}$ concentrations for the 2½ months from mid-March (period with data from all sites) were 7.1 µg m$^{-3}$ at Newcastle, 6.8 µg m$^{-3}$ at Beresfield, and 7.8 µg m$^{-3}$ at Stockton.

![Figure 11 Time series of 24-hour average PM$_{2.5}$ concentrations measured at the Newcastle, Beresfield and Stockton sites using the standard BAM and TEOM equipment. The green bars show the days when sampling for the current study was carried out.](image-url)
Figure 12 Time series of 24-hour average PM$_{10}$ concentrations measured at the Newcastle, Beresfield and Stockton sites using the standard TEOM equipment. The green bars show the days when sampling for the current study was carried out.

Figure 12 shows the equivalent results for PM$_{10}$ concentrations. As above, the green bars highlight the days when 1-in-3-day sampling was carried out for the current study, and show that these are representative of the full period, including days with both high and low concentrations.

The average PM$_{10}$ concentrations for March –May were 18.9 µg m$^{-3}$ at Newcastle, 18.6 µg m$^{-3}$ at Beresfield, and 24.4 µg m$^{-3}$ at Stockton. On most days the PM$_{10}$ concentration at Stockton was higher than at the other two sites.

3.4 Conclusion

The sampling conducted during the March to May 2014 period was successfully undertaken and will support chemical analysis and source apportionment for the Autumn season. This is concluded based on the findings of the initial audit undertaken following commissioning of the sampling program, the overall sample collection rate of 98% achieved, and sampling days coinciding with low, high and average ambient particle concentration measurements.
References

TAS, 2013. Lower Hunter Air Quality Review of Ambient Air Quality Data July 2013, Report prepared by Todoroski Air Sciences Pty Ltd for the NSW Environment Protection Authority, 14 October 2012.

YOUR CSIRO
Australia is founding its future on science and innovation. Its national science agency, CSIRO, is a powerhouse of ideas, technologies and skills for building prosperity, growth, health and sustainability. It serves governments, industries, business and communities across the nation.

FOR FURTHER INFORMATION
CSIRO Marine & Atmospheric Research
Mark Hibberd
t +61 3 9239 4400
e mark.hibberd@csiro.au
w www.csiro.au/cmar