State Plan target

By 2015 there is an increase in the area of land being managed within its capability.

Background

Land ‘capability’ is the inherent physical capacity of the land to sustain a range of long-term uses and management practices without degradation to soil, land, air and water resources (Dent & Young 1981). It is a function of various landscape features and processes, including terrain, soil and climatic attributes, as well as their interactions. Failure to manage land in accordance with its capability may result in degradation of resources both on and off site, leading to a decline in natural ecosystem values, agricultural productivity and infrastructure functionality. The management of land within its inherent physical capability is vital for the sustainable use of soil and land resources.

Land management deals with human practices followed during the course of land-use. Management actions, such as the intensity of tillage prior to sowing, length of bare fallow, maintenance of ground cover and the extent of fertiliser application, all impact on the land. Land-uses considered in this report include various forms of cropping, grazing, horticulture, forestry and nature conservation. Current land management practices associated with these land-uses are also considered against land degradation hazards. These hazards include sheet erosion, gully erosion, wind erosion, soil structure decline, organic carbon decline, soil salinity, soil acidification and acid sulfate soils.
This report outlines the level sustainable land management across the Southern Rivers region. It provides information for setting and adjusting natural resource management (NRM) targets and associated resource allocation. Land management within capability closely relates to soil condition, which is also discussed in this report.

Map of the catchment

The 10 soil monitoring units (SMUs) that were the focus of assessment within the Southern Rivers region are shown in Figure 1. An SMU is a large tract of land where changes in soil condition and land management can be periodically observed. SMUs usually have a relatively homogeneous or repeating pattern of soils, parent material, geomorphology and climate. The SMUs were jointly selected by DECCW and Southern Rivers Catchment Management Authority (CMA) staff on the basis of their area, importance, pressures and vulnerability. They collectively covered 9500 km² or 32 per cent of the region.
Assessment

The project was designed to assess changes in land management, relative to land capability, over time on the most important soils in New South Wales. It involved a comparison of the potential impact of land management actions against soil and land conditions of the sites to derive ‘land management within capability’ indices. The resulting process is summarised in Figure 2 and briefly described below. It is detailed further in Gray et al. (2008) and the supporting technical report.
Figure 2 Assessment of land management within capability

Step 1. Collect soil and land data from monitoring sites

Step 2. Collect land management data from monitoring sites

Step 3. Determine actual LSC ratings for hazards for site

Step 4. Determine potential impact of actions and upper sustainable LSC ratings for hazards

Step 5. Compare
If actual LSC > upper sustainable LSC, then site is being managed beyond capability, ie, unsustainably

Step 6. Derive land management within capability (LMwC) index (1-5) for each hazard for site

Step 7. Amalgamate indices up to sites and soil monitoring units
Validate using expert knowledge

Step 8. Amalgamate indices up to catchment regions

Step 1 – the assessment commenced with the collection of soil and land data at each of the permanent soil monitoring sites established within each SMU. This is further described in the protocol document (DECCW 2009).

Step 2 – a questionnaire was used to collect land management data. This was completed by the landholder and detailed precise management actions for each site (DECC 2008). As of March 2009, 76 monitoring sites had been established in the Southern Rivers region, 43 of which have had land management surveys returned.

Step 3 – land and soil ‘capability’ (LSC) of each site was determined using a rule-set, together with the recorded land and soil attributes (Murphy et al. 2008). Ratings ranged from one (most capable) to eight (least capable) for each land degradation hazard.

Step 4 – the potential impact from the combined land management actions was determined, corresponding to an upper allowable LSC for each hazard. This was based on a rule-set prepared with the aid of literature values and expert knowledge and approved by DECCW, CMAs and Industry & Investment NSW (I&I) staff.
Step 5 – the potential impact of the land management actions was evaluated against the actual conditions of the site by comparing the above two derived values (LSC and upper allowable LSC) (see Table 1). Where the potential impact of actions exceeded what could be sustained by the land, the land was rated as being managed beyond its capability.

Step 6 – results were then converted to the ‘land management within capability’ index, using the rules given in Table 1. The index indicates the degree to which the land is managed in accordance with its natural ability to sustain long-term usage. An index of five indicates very good, highly sustainable land management where the risk of land degradation is very low. An index of one indicates very poor, unsustainable land management, with a very high risk of land degradation.

Step 7 – indices for each hazard at each site were combined for the whole site and combined again to find an average for each SMU. Where significant differences were apparent, expert knowledge gained from DECCW and CMA staff familiar with local land management practices was used to validate the results and modifications made.

Step 8 – the indices were further combined to give an overall index rating of sustainability for the entire Southern Rivers region.

Table 1 Comparison of upper allowable LSC with actual LSC

<table>
<thead>
<tr>
<th>Impact of Land Management Actions</th>
<th>Upper Allowable LSC</th>
<th>LSC Capability Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely high (EH)</td>
<td>1</td>
<td>Ext. good</td>
</tr>
<tr>
<td>Very high (VH)</td>
<td>2</td>
<td>Very good</td>
</tr>
<tr>
<td>High (H)</td>
<td>3</td>
<td>Good</td>
</tr>
<tr>
<td>Moderate (M)</td>
<td>4</td>
<td>Mod-good</td>
</tr>
<tr>
<td>Moderate to low (M-L)</td>
<td>5</td>
<td>Mod-poor</td>
</tr>
<tr>
<td>Low (L)</td>
<td>6</td>
<td>Poor</td>
</tr>
<tr>
<td>Very low (VL)</td>
<td>7</td>
<td>Very poor</td>
</tr>
<tr>
<td>Extremely low (EL)</td>
<td>8</td>
<td>Ext. poor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land management within capability index</th>
<th>Managed at:</th>
<th>Sustainability</th>
<th>Risk of land degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>>=2 within capability</td>
<td>very good</td>
<td>negligible</td>
</tr>
<tr>
<td>4</td>
<td>1 within capability</td>
<td>good</td>
<td>very low</td>
</tr>
<tr>
<td>3</td>
<td>at capability</td>
<td>fair</td>
<td>low</td>
</tr>
<tr>
<td>2</td>
<td>1 beyond capability</td>
<td>poor</td>
<td>high</td>
</tr>
<tr>
<td>1</td>
<td>>=2 beyond capability</td>
<td>very poor</td>
<td>very high</td>
</tr>
</tbody>
</table>

Current status of land management within capability

Information products relating to the current status of land management within capability in the Southern Rivers region are presented in Table 2 by SMU and Table 3 by indicator. Figure 3 provides an overview of these details on a regional map.
Table 2 Land management within capability of SMUs in the Southern Rivers region

<table>
<thead>
<tr>
<th>Soil monitoring unit</th>
<th>Soil monitoring unit name</th>
<th>Soil types and monitored land use</th>
<th>Land management within capability index</th>
<th>Range of indices</th>
<th>Worst indicators and index</th>
<th>Data source and confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bungonia Tablelands</td>
<td>Red and Yellow Kurosols and Natric Sodic Chromosols. Unimproved pasture and unused land.</td>
<td>2.5</td>
<td>Organic carbon decline</td>
<td>1.5</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>2</td>
<td>Jindabyne Hills</td>
<td>Yellow and Red Chromosols. Unimproved pasture and pine plantations.</td>
<td>2.1</td>
<td>Sheet erosion, Gully erosion, Wind erosion, Acidification, Organic carbon decline, Salinity/waterlog</td>
<td>2.0</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>3</td>
<td>Bega Valley</td>
<td>Yellow and Red Kandosols and Kurosols. Improved pasture and woodlots.</td>
<td>3.1</td>
<td>Acidification, Organic carbon decline, Structure decline</td>
<td>2.5</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>4</td>
<td>Ulladulla Coast</td>
<td>Yellow Kurosols and Brown Kandosols. Native forests and unimproved pastures.</td>
<td>2.9</td>
<td>Sheet erosion, Gully erosion</td>
<td>2.0</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>5</td>
<td>Upper Shoalhaven Valley</td>
<td>Red and Yellow Chromosols and shallow Tenosols. Unimproved pasture and woodlots.</td>
<td>2.7</td>
<td>Organic carbon decline</td>
<td>1.5</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>6</td>
<td>Braidwood Granites</td>
<td>Yellow Chromosols and Sodic Yellow Chromosols.</td>
<td>2.9</td>
<td>Gully erosion</td>
<td>2.0</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>7</td>
<td>Moss Vale Plateau</td>
<td>Deep Yellow Kandosols and Kurosols. Improved and unimproved pastures.</td>
<td>3.1</td>
<td>Structure decline</td>
<td>2.5</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>8</td>
<td>Bombala Metasediments</td>
<td>Shallow Leptic Tenosols, Red Kandosols and Natric Kurosols. Unimproved pasture.</td>
<td>2.4</td>
<td>Sheet erosion, Gully erosion, Acidification, Salinity/waterlog</td>
<td>2.0</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>9</td>
<td>Monaro Basalts</td>
<td>Brown Dermosols and Black Vertosols. Unimproved pasture.</td>
<td>2.8</td>
<td>Gully erosion, Organic carbon decline</td>
<td>2.0</td>
<td>B and K Medium</td>
</tr>
<tr>
<td>10</td>
<td>Nowra Shoalhaven Floodplain</td>
<td>Red Kandosols and Red and Yellow Kurosols and Oxyaquic Hydrosols. Improved pasture.</td>
<td>2.9</td>
<td>Organic carbon decline, Structure decline</td>
<td>2.0</td>
<td>B and K Medium</td>
</tr>
</tbody>
</table>
Legend for Table 2

a Land Management within Capability (LMwC) Index:

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 – 5.0</td>
<td>Very good Managed well within capability, negligible risk of degradation and probable improvement of soil and land resources</td>
</tr>
<tr>
<td>3.6 – 4.5</td>
<td>Good Managed within capability, very low risk of degradation to soil and land resources</td>
</tr>
<tr>
<td>2.6 – 3.5</td>
<td>Fair Managed at capability, low risk of degradation to soil and land resources</td>
</tr>
<tr>
<td>1.6 – 2.5</td>
<td>Poor Managed slightly beyond capability, high risk of degradation to soil and land resources</td>
</tr>
<tr>
<td><1.5</td>
<td>Very poor Managed well beyond capability, very high risk of degradation to soil and land resources</td>
</tr>
<tr>
<td>No data</td>
<td>Not included for change monitoring. Information may be available in support documents</td>
</tr>
</tbody>
</table>

b Range of indices: pie chart shows variation in LMwC indices for the different hazards in each SMU

c Worst indicators and index: gives the indicators (or hazards) of most concern in the SMU, with the associated LMwC index

d Data source:

- B Baseline data for soil condition – from field and laboratory measurements
- L Landholder survey on land management
- K Expert knowledge – from DECCW and CMA staff

e Data confidence:

- High Derived from numerous landholder surveys and field data from representative sites in the baseline study, and validated using expert knowledge
- Medium Derived from limited landholder surveys and field data from sites in the baseline study or roadside surveys, in conjunction with expert knowledge
- Low Derived from modelling or expert knowledge only
Table 3 Land management within capability indicators in the Southern Rivers region

<table>
<thead>
<tr>
<th>Capability hazard</th>
<th>Land management within capability index</th>
<th>Range of indices</th>
<th>Apparent trend</th>
<th>SMUs of concern (index <=2.5)</th>
<th>Data source and confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion - sheet</td>
<td>2.8</td>
<td></td>
<td>↑</td>
<td>1, 2, 4, 8</td>
<td>B and K Low</td>
</tr>
<tr>
<td>Erosion - gully</td>
<td>2.5</td>
<td></td>
<td>↑</td>
<td>1, 2, 4, 5, 6, 8, 9</td>
<td>B and K Low</td>
</tr>
<tr>
<td>Erosion - wind</td>
<td>3.0</td>
<td></td>
<td>↑</td>
<td>1, 2, 8, 9</td>
<td>B and K Low</td>
</tr>
<tr>
<td>Acidification</td>
<td>2.9</td>
<td></td>
<td>↔</td>
<td>2, 3, 8</td>
<td>B and K Low</td>
</tr>
<tr>
<td>Organic carbon decline</td>
<td>2.3</td>
<td></td>
<td>↓</td>
<td>1, 2, 3, 5, 6, 9, 10</td>
<td>B and K Low</td>
</tr>
<tr>
<td>Structure decline</td>
<td>2.8</td>
<td></td>
<td>↓</td>
<td>1, 3, 7, 10</td>
<td>B and K Low</td>
</tr>
<tr>
<td>Acid sulfate soils</td>
<td>3.5</td>
<td></td>
<td>↑</td>
<td>-</td>
<td>B and K Low</td>
</tr>
<tr>
<td>Salinity/water logging</td>
<td>2.9</td>
<td></td>
<td>↔</td>
<td>2, 8</td>
<td>B and K Low</td>
</tr>
</tbody>
</table>

Overall index:
- **Catchment:** 2.8
- **State:** 3.0

Legend for Table 3

a Land Management within Capability (LMwC) Index: see Table 2

b Range of indices: pie chart shows variation in LMwC indices for the different SMUs for each hazard (indicator)

c Apparent trend in land management relative to capability as gained from the formal expert knowledge surveys:

↑ Improving: there appears to be a steady adoption by landholders of more sustainable land management practices, leading to an improvement in soil and land condition

↔ Steady, no change: there is no apparent move towards or away from more sustainable practices

↓ Declining: there appears to be a general move away from sustainable practices, leading to a decline in soil and land condition
Pressures

The broad pressures that control the extent of land management within capability in the Southern Rivers region are complex and beyond the scope of this project to assess and monitor. They are partly dealt with in the socio-economic monitoring themes and include issues such as:

- financial, technical and managerial capacities of landholders
- knowledge and perceptions of sustainable land management practices by landholders
- market dynamics of agricultural products and production costs
- tax and government financial and legislative settings to promote sustainable land management
- long-term climatic changes, such as increasing severity of droughts.

Management activity

The management activity for the soil condition theme and the land management within capability theme are very similar, as both centre on promoting the adoption of sustainable land management practices by landholders.

Increasing the area of land managed within capability is one of NSW’s NRM targets as outlined in the NSW State Plan.

Addressing the target within the Southern Rivers region involves initiatives and programs at the state and regional levels that will ultimately bring about the adoption of best land capability-sensitive management practices by landholders.
State level

The NSW Government guides NRM through various legislation, policies, strategies and programs.

Legislation

The *Catchment Management Authorities Act 2003* established the 13 CMAs and continues to outline their broad responsibility for NRM in their regions. The *Soil Conservation Act 1938* provides for the conservation of soil resources; however, its role in effective soil management has diminished over time. Various other Acts provide direct and indirect mechanisms for soil protection and management, including the *Protection of the Environment Operations Act 1997, Environmental Planning and Assessment Act 1979, Native Vegetation Act 2003* and the *Crown Lands Act 1989*.

Policies and strategies

The State Soils Policy (1987) outlines important principles for the protection and management of NSW soils. It was recently reviewed and is undergoing public consultation. Other significant policies and strategies include:

- **Total Catchment Management Policy (1987)** – aims to ensure the coordinated use and management of land, water, vegetation and other natural resources on a catchment basis
- **Sustainable Agriculture Policy (1998)** – aims to facilitate a change in agricultural production in NSW towards ecologically and economically sustainable practices and farming systems
- **NSW State Salinity Strategy (2000)** – aims to slow down the increase in salinity and lay the foundations for future salinity management
- **State Environmental Planning Policy (SEPP) Rural Lands (2008)** – aims to facilitate the orderly and economic use and development of rural lands for rural and related purposes.

Programs

A number of relevant programs operate at the state level:

- **Monitoring, evaluation and reporting (MER) program** – DECCW is responsible for continuing its MER program and completing a baseline across all CMAs relating to soil condition and land management. The Australian Department of Agriculture, Fisheries and Forestry is funding a pilot program for national monitoring of water and wind erosion, soil acidification and soil carbon. The SoilWatch soil condition performance monitoring kit is being developed to complement and supplement MER surveillance monitoring throughout the state
- **Soil and land-use mapping** – much of eastern and central NSW is covered by soil landscape mapping at 1:100,000 or 1:250,000; this is primarily undertaken by DECCW. Reconnaissance-scale soil or land system mapping covers other areas. A program of detailed land-use mapping across the state is nearing completion
- **Assessment systems** – a number of soil and land assessment systems have recently been developed that will ultimately lead to more sustainable land management. These include:
 - a system to assess the impact of various land management actions on soil condition
 - an LSC assessment system, with draft mapping completed across NSW
 - soil and landscape constraint assessment system
 - the Tools2 (SLICK) modelling system which allows for assessment of the impact on soils from different management options
Information exchange and advice – provision of soil and landscape information and land management advice is provided through various publications, maps and databases (see www.environment.nsw.gov.au/soils/index.htm). The NSW Soil and Land Information System (SALIS) is run by DECCW and is intended as the single soil database for soil information in NSW. The Natural Resource Atlas (www.nratlas.nsw.gov.au) is used to access publicly available soil profile information. The NSW Land Management Database (LMD) is being developed and distributed to CMAs throughout the state. Extension services that encourage sustainable land management practices by landholders are undertaken widely by I&I staff throughout the state.

Research – programs aimed at improving soil condition, productivity and sustainable land management practices are carried out by various national and state institutions, including the Commonwealth Scientific and Industrial Research Organisation, universities, I&I, DECCW and rural industry bodies (eg Grains Research Development Corporation).

Regional level

The Southern Rivers Catchment Action Plan (CAP) is the key document that coordinates and drives the effort to improve natural resources across the region. The CAP describes the whole-of-Government approach to soil condition and sustainable land management targets and sets the direction for investment in NRM over the next 10 years. The Southern Rivers CAP can be found at www.southern.cma.nsw.gov.au.

The CAP includes specific targets, with specific areas (hectares), that will address the broader state targets. These targets are achieved through the following:

Data collection

This involves the development of a baseline of soil information, eg acid sulfate soil mapping project was completed for the Shoalhaven region.

Land management data is collected over individual properties and entered into the NSW LMD.

Planning

Priority issues are identified, as well as locations for improved land management and associated investment.

Collaboration

Partnerships are formed with farming organisations, industry groups, relevant government agencies (particularly DECCW, I&I, the Land and Property Management Authority), tertiary institutions, Landcare and similar community groups and individuals. Examples include:

- Southern Rivers CMA, where the dairy industry and dairy farmers work together to achieve sustainable farming practices – over one tonne of soil, collected from over 500 paddocks, was tested to enable better effluent management
- work in partnership with Sydney Metropolitan CMA to improve the quality of water supplied to Sydney – works include erosion control, bed and bank stabilisation of creeks and rivers and revegetation works along waterways.

Awareness and skills-raising

Training days and workshops are held and various guidelines and information sheets produced.
Contracts and programs with landholders

Contracts have been developed with landholders to modify and improve land management practices.

Incentive programs, aimed at improving land management practices, have also been implemented.

Continued monitoring and evaluation

Monitoring programs to assess progress towards the targets will continue under CMA and DECCW programs.

Further details and examples of many of these activities are reported in the CMA’s recent annual reports.

Other programs include:

- a contract-managed salinity assessment and management option project – this project investigated groundwater systems that had the potential to cause soil salinity problems. Sites were then checked for salinity levels and management options were prepared
- soil erosion works, completed outside of the Sydney Metropolitan CMA area under Section 10 of the Soil Conservation Act
- a project, managed by Southern Rivers CMA, aimed at the strategic use of compost containing recycled organic matter and plant nutrients as a soil amendment – this compost improves soil chemical and biological fertility, soil structure and plant establishment on degraded soils.

Other regional or local based bodies and programs that aid in improved land management include:

- local councils, through their compliance with the Local Government Act 1993 and local or regional planning instruments such as local environmental plans and regional environmental plans
- Landcare groups that facilitate improved landholder knowledge and on-ground works
- universities that undertake research programs in the region.
Further reading

