Murray River (NSW)
River Flow Objectives explained

This section explains each of the River Flow Objectives (RFOs). See the RFOs recommended for specific parts of the Murray River catchment.

This section does NOT apply to streams affected by the Snowy River Hydro-electric Scheme, the Murray River, or other streams on the Murray floodplain that are subject to interstate processes.

In total, there are eleven inland River Flow Objectives, each dealing with a critical element of natural river flows.

Flow patterns in many rivers have been significantly altered and will not return to natural flow regimes. The NSW Government is not attempting to restore completely natural flow patterns where the community significantly benefits from altered flow patterns. Communities and the Government have identified important areas where we can make adjustments to maintain or improve river health while continuing to benefit from water use.

Water Sharing Plans (WSPs) will contain integ-
rated actions and timeframes to achieve objectives
and implement identified actions in consultation with the community. Different approaches and outcomes will apply across the catchment.

Recommending variations to objectives

The Natural Resources Commission (NRC) will review the role of WSPs in achieving state-wide natural resource management standards and targets after 5 years of the plan being made. As part of this review the NRC will call for public submissions and consider other state-wide policies or agreements that are relevant to the catchment management area. The Minister for Natural Resources will consider the review undertaken by the NRC when deciding whether to extend the duration of the current water sharing plan or to make a replacement plan.

The Minister may also amend plan actions at any time if the plan so allows or if it is deemed to be in the public interest to do so

.

Snowy Water Inquiry

The Snowy Water Inquiry was commissioned in 1998 to assess river management of the Snowy Mountains Hydro-Electric Scheme and recommend environmental flow options for rivers affected by the Scheme. The Inquiry’s terms of reference required analysis of the environmental, social and economic effects of various options for future management, prior to making recommendations to the NSW and Victorian Governments. The final report of the Inquiry was submitted on 23 October 1998. In August 2000, the NSW and Victorian Governments reached an agreement for environmental releases for the Snowy River below Jindabyne Dam which will increase flows from 1% to 22% of natural flows downstream of Jindabyne Dam within 10 years. Releases were also agreed for other rivers affected by the Scheme, including the upper Murrumbidgee River, the upper Snowy River (above Jindabyne Dam), the Goodradigbee River and the Geehi River.

Interstate processes

The Murray, Edward, Wakool and Niemur rivers are affected by interstate processes, so environmental objectives for these rivers have been established through different processes . In 2004, the New South Wales, Victorian, South Australian, Queensland and Commonwealth Governments agreed to address flows in the Murray River as part of the National Water Initiative, by signing the Intergovernmental Agreement on Addressing Water Overallocation and Achieving Environmental Objectives in the Murray-Darling Basin

This Agreement sets out the arrangements for investing $500 million over five years commencing in 2004-05, to reduce the level of water overallocation and to achieve specific environmental outcomes in the Murray-Darling Basin (MDB), principally the River Murray and Lower Darling.

The first priority for this investment will be water recovery for six significant ecological assets identified by the MDB Ministerial Council.

More information can be found at http://www.thelivingmurray.mdbc.gov.au

Protect pools in dry times

Protect natural water levels in pools of creeks and rivers and wetlands during periods of no flows

During dry times, some streams stop flowing and form pools. Pools and wetlands are refuges for aquatic plants and animals. Pumping water from these areas can make it more difficult for many species to recover after a drought.

Measures to achieve objective

Supporting information

Protect natural low flows

Protect natural low flows

Water extraction and storage are high in dry times and impose long artificial droughts that increase the stress on aquatic plants and animals.

Measures to achieve objective

Supporting information

Protect important rises in water levels

Protect or restore a proportion of moderate flows ('freshes') and high flows

Rain causes peaks in river flows. This 'pulsing' of flows, including their duration, may trigger migration of animals and reproduction of plants and animals; provide over-bank flows to wetlands and floodplains; shape the river channel; and control water quality and nutrients. Water storage and extraction can alter or remove freshes, inhibiting these vital processes. The height, duration, season and frequency of higher flow events are all important.

Measures to achieve objective

Supporting information

Maintain wetland and floodplain inundation

Maintain or restore the natural inundation patterns and distribution of floodwaters supporting natural wetland and floodplain ecosystems

Floodplain and wetland ecosystems develop in response to flow patterns and the landscape between the river and wetlands or floodplains. Floodplain works can change the flooding patterns, which will lead to changes in habitat and vegetation. These changes can be expected to result in reduced or different species diversity and abundance, particularly reduced numbers of native fish, and water quality problems.

Measures to achieve objective

Supporting information

Mimic natural drying in temporary waterways

Mimic the natural frequency, duration and seasonal nature of drying periods in naturally temporary waterways

Continuous or seasonal water releases from water storages can mean streams and wetlands can sometimes be 'wetter' than natural. In streams and wetlands that naturally dry out, this can create problems in maintaining habitat, vegetation, nutrient cycling and signals for breeding. It can also lead to a high water table and associated salinity problems. Natural wetting and drying cycles produce diversity of habitat and, therefore, high species diversity.

Measures to achieve objective

Supporting information

Maintain natural flow variability

Maintain or mimic natural flow variability in all streams

Australia's rainfall and river flows are naturally variable. The way we currently store and divert river water can reduce natural pulsing of water down rivers and maintain artificially high or stable river heights. Hydroelectric releases can vary unnaturally between day and night. In urban areas and other places where the ability of the land to absorb or detain rainfall is reduced, more water runs off rapidly, so water levels will rise higher. These changes often create problems with streambank stability, biodiversity and signals for breeding and migration.

Measures to achieve objective

Supporting information

Maintain natural rates of change in water levels

Maintain rates of rise and fall of river heights within natural bounds

Shutting off dam releases, or starting many pumps together, can drop river levels too quickly. If water levels fall too fast, water does not drain properly from riverbanks and they may collapse. Migration of aquatic animals may also be restricted by such sudden falls in river height.

Measures to achieve objective

Supporting information

Manage groundwater for ecosystems

Maintain groundwater within natural levels and variability, critical to surface flows and ecosystems

Some shallow groundwaters are directly linked to flows in streams and wetlands. They may provide base flows in rivers during dry periods and may be primary sources of water for wetland, floodplain and riparian vegetation. Seriously depleting groundwater in dry times may lead to unnatural recharge of groundwater from surface waters during the next flow.

Measures to achieve objective

Supporting information

Minimise effects of weirs and other structures

Minimise the impact of instream structures

Most instream structures (e.g. weirs) convert flowing water to still water, thus altering habitat and increasing the risk of algal blooms or other water quality problems. Barriers prevent passage of plant propagules (e.g. seeds) and animals.

Measures to achieve objective

Supporting information

Minimise effects of dams on water quality

Minimise downstream water quality impacts of storage releases

Many dams release water from the bottom of reservoirs where temperatures and dissolved oxygen are low and nutrient concentrations are high. These changed water quality conditions can affect the river downstream for hundreds of kilometres. For instance, many native fish will not breed in colder water.

Measures to achieve objective

Supporting information

Make water available for unforeseen events

Ensure river flow management provides for contingencies

River systems can sometimes be affected by unforeseen or irregular events-such as algal blooms or the start of bird-breeding seasons. As river flows are a major determinant of many of these processes, we can sometimes alleviate a water-quality or environmental problem by better managing river flows.

Measures to achieve objective

This page was published 1 May 2006

|