Early Australian Commercial Glass: Manufacturing Processes

prepared by
Dr James Boow B.Sc. Tech.,
Ph.D., F.A.I.E., F.I.Cer., F.S.G.T.

edited by
Ms. Julie Byrnes
for
The Heritage Council of NSW

The Heritage Council of New South Wales is an independent advisory body to the Minister for Planning. The Council makes recommendations to the Minister on the conservation of items in the State considered to have heritage significance.

The Department of Planning provides technical and administrative assistance to the Council and produces its publications and exhibitions.
DISCLAIMER
Any representation, statement, opinion or advice expressed or implied in this publication is made in good faith but on the basis that the State of New South Wales, its agents and employees are not liable (whether by reason of negligence, lack of care or otherwise) to any person for any damage or loss whatsoever which has occurred or may occur in relation to that person taking or not taking (as the case may be) action in respect of any representation, statement or advice referred to above.

© Crown Copyright 1991
ISBN 0 7305 7050 6
H91/2 Printed in August 1991

Cover: Pressing Glass (from Apsley Pellatt, Curiosities of Glass Making, 1849, p.121)
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>v</td>
</tr>
<tr>
<td>CONVERSION TABLE FOR COMMON MEASUREMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>vi</td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION TO GLASS MANUFACTURING PROCESSES

1.0.1 Traditional methods

2.2 Characteristics of glass made by traditional methods

2.2.1 Free-blown fire-polished surfaces

2.2.2 Striae

2.2.3 Turn marks

2.2.4 Tooling marks

2.2.5 Join marks - untooled and tooled

2.2.6 Pontil marks

2.2.7 Non-repetitive shapes

2.2.8 Summary

2.3 Early glassware and forming methods in historical context

2.3.1 Tableware

2.3.2 Apothecaries' glassware

2.3.3 Food bottles

2.3.4 Wine/beer bottle characteristics

2.3.5 Re-use of bottles

2.3.6 Summary

3.0 EFFECTS OF BRITISH EXCISE DUTIES, 1746-1845

4.0 FORMING AND MOULDING AIDS

4.1 Push-ups

4.1.1 Shaped metal or wood piece

4.1.2 Pointed metal or wood piece

4.1.3 Metal rod

4.1.4 Ricketts push-up device

4.1.5 Shaped push-up tools

4.2 Pontils

4.2.1 Glass-tipped (plain or open) pontil

4.2.2 Sand-pontil

4.2.3 Blow-pipe (or ring) pontil

4.2.4 Bare iron pontil

4.2.5 Summary
4.3 Holding tools
4.3.1 Sabot
4.3.2 Snap-case or gadget
4.3.3 Disappearance of pontil marks

4.4 Moulds and mould seams
4.4.1 Dip moulds
4.4.2 Two-piece moulds
4.4.3 Three-piece moulds
4.4.4 Turn and paste-moulds
4.4.5 Engraved moulds
4.4.6 Engraved plate-moulds
4.4.7 Sandblasting
4.4.8 Dating by embossed marks and mould seams

5.0 BOTTLE FINISHING AND FINISHES

5.1 Purpose

5.2 Early forms of finish
5.2.1 Cracked off
5.2.2 Burst top or lip
5.2.3 Sheared lip
5.2.4 Flared lip
5.2.5 Metal-fitted flared lip
5.2.6 Ground glass stoppers

5.3 Traditionally formed collars
5.3.1 Single collars
5.3.2 Double collars

5.4 Moulding by finishing tool
5.4.1 Finishing tool
5.4.2 Features of finish formed by finishing tool
5.4.3 Basic changes caused by finishing tools

5.5 Formed collars
5.5.1 Single
5.5.2 Spherical
5.5.3 Double
5.5.4 Perry-Davis
5.5.5 Champagne (and foil seal)
5.5.6 Crown-cork

5.6 Shaped mouths
5.6.1 Aire and Calder patent
5.6.2 Stopper and cap seals
5.6.3 Milk bottle finishes
5.6.4 Swing or Lightening seal

5.7 Ledge seals
5.7.1 Barrett (or Hogben) long plug
5.7.2 Hutchinson patent
5.7.3 Ledge seals e.g. Lamont, Vallet etc
7.4 Identification and dating of flat glass
 7.4.1 By thickness
 7.4.2 Other guides
 7.4.3 Surface characteristics

8.0 SUMMARY OF CRITERIA FOR DATING COMMON BLACK AND FLINT GLASS BOTTLES

8.1 Effects of British glass tax

8.2 Common 'black' glass bottles
 8.2.1 Shaping methods
 8.2.2 Push-ups and pontil marks
 8.2.3 Forms of finish

8.3 Clear 'flint' and pale-green bottles
 8.3.1 Shaping methods
 8.3.2 Push-ups and pontil marks
 8.3.3 Forms of finish

8.4 Some Technical implications

9.0 LIST OF TERMS

10.0 BIBLIOGRAPHY

11.0 APPENDIX 1: 1200 Australian Soft Drink Distributors, Manufacturers and Bottles, c. 1830-1930.

12.0 APPENDIX 1a: Extraction of lettered and pictorial trade marks from Appendix 1.

13.0 APPENDIX 2: Index of 60 Useful Glass Manufacturers Marks including British Registration Mark Table and British Patent Number Table.

14.0 APPENDIX 3: Indicative Alphabetical List of Australian Company and Trade-Type Names, c. 1800-1900

15.0 APPENDIX 4: More recent developments in glasses and processes.
ACKNOWLEDGEMENTS

For valuable assistance in providing sources of information used in this study and in the preparation of this report, grateful acknowledgement is made to:

Mary Boow, who undertook the collation of tabulated data and the drafting of the detailed line drawings of bottles, moulds and equipment.

New South Wales State and Commonwealth Archives, New South Wales State and Mitchell Libraries, Museum of Applied Arts and Sciences, West Australia Maritime Museum, Parks, Canada, Ottawa, the British Glass Circle, the British Glass Association, the University of Technology and Glass Collectors and their publications.

This Report is dedicated to the late Jennifer Bennett to acknowledge her service to friends and others.

ABBREVIATIONS

s. Imperial monetary unit of shilling
d. Imperial monetary unit of pence
ABR Australian Bottle Review
H.R.A. Historical Records of Australia
MAAS Museum of Applied Arts and Sciences
S.G. Sydney Gazette
S.H. Sydney Herald

CONVERSION TABLE FOR COMMON MEASUREMENTS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Imperial unit</th>
<th>Metric unit</th>
<th>Conversion factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 in = 25.4 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ft = 30.5 cm</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>inch (in)</td>
<td>millimetre (mm) or centimetre (cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>foot (ft)</td>
<td>centimetre (cm) or metre (m)</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>ounce (oz)</td>
<td>gram (g)</td>
<td>1 oz = 28.2 g</td>
</tr>
<tr>
<td></td>
<td>pound (lb)</td>
<td>gram (g) or kilogram (kg)</td>
<td>1 lb = 454 g</td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>tonne (t)</td>
<td>1 ton = 1.02 t</td>
</tr>
<tr>
<td>Volume</td>
<td>fluid ounce (fl oz)</td>
<td>millilitre (mL)</td>
<td>1 fl oz = 28.4 mL</td>
</tr>
<tr>
<td></td>
<td>pint (pt)</td>
<td>millilitre (mL) or litre (L)</td>
<td>1 pt = 568 mL</td>
</tr>
<tr>
<td></td>
<td>quart (qrt)</td>
<td>millilitre (mL) or litre (L)</td>
<td>1 qrt = 1.136 L</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Figure 1.</td>
<td>The Australian Glass Company's works in Richmond, Victoria c. 1878.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Figure 2.</td>
<td>The major stages in traditional glass manipulation.</td>
<td>2-5</td>
<td></td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Centring and attaching the glass-tipped pontil so that the shape rotates on its axis during later manipulation.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Applying a stream of additional hot glass.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Simple tools used to manipulate molten glass.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Figure 6.</td>
<td>The foot of a wine glass made by spinning in a former shows circular striæ and circular turn marks.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Diagram of additional reinforcing glass wrapped around the top of a bottle showing twisted folds and tooled join.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Additional reinforcing glass on bottle top showing turn marks and inner joint.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Three early beer or wine type bottles from Camden.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Early Anglo-Irish style tableware.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Figure 11.</td>
<td>Jelly Glasses possibly made from sand sent by James King to the Falcon Glassworks of Pellatt & Co., London, c. 1832.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Figure 12.</td>
<td>Designs of glass cadies from Apsley Pellatt catalogue c. 1840.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Figure 13.</td>
<td>Four-piece moulded cadie with eight panels of relief decoration.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Figure 14.</td>
<td>1809 Trade Card of Price & Co., Chemists and Druggists.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Figure 15.</td>
<td>The interior of an apothecary's shop painted in 1825 by E. Bristow showing apothecaries' glassware.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Figure 16.</td>
<td>Advertisement from the Norwich Gazette of 1727 showing a woodcut of an apothecary bottle.</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Figure 17.</td>
<td>17th and 18th century medical bottles with flared lips.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Figure 18.</td>
<td>Typical shapes of early food bottles.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Figure 19.</td>
<td>Wine bottle seals from First Government House site in Sydney.</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Figure 20.</td>
<td>The development of the wine bottle.</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Figure 21.</td>
<td>Typical form of bottle base and pontil mark resulting from a glass-tipped pontil.</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Figure 22.</td>
<td>Typical form of bottle base and pontil mark resulting from a sand-pontil.</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Figure 23.</td>
<td>Quatrefoil impression in the centre of push-ups due to grooved quadrants on the end of the metal rod.</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Figure 24.</td>
<td>Sand-pontil being attached to quatrefoil type push-up and typical appearance of the bottle base.</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Figure 25.</td>
<td>Appearance of bottle base formed from Ricketts push-up device, lettered metal ring and moulds.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Figure 26.</td>
<td>Possible forms of hand-held push-up tools.</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Figure 27.</td>
<td>Likely form of a three-part push-up tool used as the moveable base of a dip mould.</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Figure 28.</td>
<td>The blow-pipe used as a pontil and typical appearance of the base.</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Figure 29.</td>
<td>The appearance of the bottle base due to the bare iron pontil.</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Figure 30.</td>
<td>Examples of typical holding tools.</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Figure 31.</td>
<td>Dark-green square gin bottle and its base, showing distortion of the lower sides and deep markings on the base.</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Figure 32.</td>
<td>Graph showing change in pontil marking of American medical bottles</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Figure 33.</td>
<td>Examples of one-piece dip moulds and shapes produced from them.</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Figure 34.</td>
<td>Dip moulded sealed wine bottle made for James Busby's Kirkton Estate.</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Figure 35.</td>
<td>Two-piece bottom-hinged moulds.</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Figure 36.</td>
<td>Two-piece side-hinged mould from an 1817 illustration of glass-maker's tools.</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Figure 37.</td>
<td>Two-piece moulded bottles showing seams.</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>
Figure 38. Bottom-plate construction and typical mould seams obtained in two-piece moulds.

Figure 39. Aire & Calder patent bottle.

Figure 40. Henry Ricketts' improved mould and moulding mechanism.

Figure 41. Simple three-piece mould & corresponding mould marks on the bottle.

Figure 42. Foot-operated three-piece bottle mould.

Figure 43. Seam-free glass formed from water-soaked wooden or paste-moulds.

Figure 44. Embossing - its dependence on the relative movement of the glass and mould.

Figure 45. Surfaces which can (and cannot) be embossed using various moulding methods.

Figure 46. Examples of early pontilled apothecaries' bouteles from engraved moulds.

Figure 47. Examples of embossed bottles from engraved moulds after c. 1835.

Figure 48. Interchangeable inserts into a mould wall.

Figure 49. Typical appearance of plate-moulded bottles.

Figure 50. Cracked-off finish.

Figure 51. Burst-top finish.

Figure 52. Flared-lip finish.

Figure 53. Pewter-fitted flared-lip.

Figure 54. Narrow and wide-mouth ground-in stoppers and pressed stopper with mould marks.

Figure 55. Single anchoring collar up to c. 1700-20.

Figure 56. Broader and higher single collars c. 1710-c. 1790.

Figure 57. Single collar as found in high quality, wide-mouth food containers c. 1750-c. 1850.

Figure 58. Double reinforcing and anchoring collars found in wine bottles c. 1790-c. 1820.

Figure 59. Increased depth of reinforcing collar in wine bottles c. 1820-c. 1860.

Figure 60. Finishing tool.

Figure 61. Spherical or 'Blob-top' finish c. 1840-50 - c. 1940.

Figure 62. Double collar formed with a finishing tool.

Figure 63. Perry-Davis machine-made finish, c. 1900 to date.

Figure 64. 'Champagne' type finish or 'ring seal' - c. 1850 to date.

Figure 65. Crown-cork finish formed using a finishing tool c. 1895-c. 1920.

Figure 66. Stopper and cork insert in a sauce bottle.

Figure 67. Disc top milk bottle c. 1920-30 onwards.

Figure 68. Foil top milk bottle c. 1950 onwards.

Figure 69. Swing stopper c. 1880-c. 1950.

Figure 70. Swing stopper - bottling jars c. 1880-c. 1950.

Figure 71. Barrett or Hogben long-plug or 'stick' seal c. 1870-c. 1900.

Figure 72. The Hutchinson patent c. 1885-1900.

Figure 73. Internal ledge-forming tool after Lamont.

Figure 74. The Lamont type seal c. 1875-c. 1910.

Figure 75. The Vallet type seal.

Figure 76. Groove-forming finishing tool.

Figure 77. One way pour Codd in pale-green glass. Tooth & Co. Ltd Sydney, c. 1880-1900.

Figure 78. G. Gledhill (New Zealand) elastic ball patent c. 1875-c. 1890.

Figure 79. Summary of the main types of Codd variants, usually occurring after c. 1885.

Figure 80. All-way pour or 'bulb' type Codd bottle made by Ross Bros Erskineville after 1897.

Figure 81. Internal screw 'bulb' type Codd bottle made by Ross Bros Erskineville after 1897.

Figure 82. Wide-mouth external screw as used in Mason fruit bottling jars.
Figure 83. Modern narrow-mouth external-screw finish. 81
Figure 84. Horner patent. 82
Figure 85. Langley patent. 82
Figure 86. Basic principles of glass pressing. 84
Figure 87. Typical plunger shapes for glass pressing - all have tapered sides. 84
Figure 88. The side-lever press. 84
Figure 89. Round-edged appearance of pressed glass decoration under magnification. 85
Figure 90. Sharp-edged appearance of cut glass decoration under magnification. 85
Figure 91. A student's diagram of a more complex press mould for a stemmed goblet (1937). 86
Figure 92. A selection of tableware, milk bar and restaurant glass (mainly pressed) made by Crown Crystal Glass Co. Waterloo (1920s-1960s) from the Crown Corning Collection. 87
Figure 93. Blow-blow forming for machine-made containers. 89
Figure 94. The Ashley 'Plank' blow-blow machine. 91
Figure 95. Suction scar on bottle base resulting from the smearing of hot viscous glass by cut-off knife below parison mould. 92
Figure 96. Base and shoulder of modern machine-made wine bottle. 95
Figure 97. Finish, neck, shoulders and base of a square case gin. 96
Figure 98. Engraved seals of the British glass manufactory, 1773, and of the British plate glass manufactory, 1797. 99
Figure 99. The Crown process in which the glass flattens by centrifugal force during rapid spinning. 100
Figure 100. Typical cutting pattern of Crown glass to avoid wastage (in inches). 101
Figure 101. Flattened cylinder method showing the processes of cracking-off, splitting and flattening. 103
Figure 102. Graph showing the maximum dimensions of window glass advertised in the Sydney Gazette 1804-40 and Sydney Morning Herald 1840-60. 104
Figure 103. Sketch illustrating final form of improved flattened cylinder process. 105
Figure 104. The Lubbers machine cylinder process. 106
Figure 105. The Fourcault continuous drawing process. 106
Figure 106. The Bicheronoux process. 109
Figure 107. Weight per unit area of flat glass of varying thickness. 110

LIST OF TABLES

Table 1. Bottle measures and capacities used in Britain in the early 1800s. 23
Table 2. Characteristics of common black beer and wine type bottles c. 1800-20. 23
Table 3. Rates of duty on British glassware 1779-1845. 25
Table 4. Probable frequency of identifiable marks on pieces of early Australian glass. 58
Table 5. Summary of likely dates of first appearances and origins of machine-made bottles on Australian sites. 93
Table 6. Approximate thicknesses of different forms of flat glass. 111
Table 7. Summary of dates of shaping methods for common 'black' glass bottles. 113
Table 8. Summary of dates for push-up types for common 'black' glass bottles. 114
Table 9. Summary of dates of forms of finish for common 'black' glass bottles. 115
Table 10. Summary of the dates of shaping methods for clear 'flint' and pale-green bottles. 116
Table 11. Summary of dates of push-ups and pontil marks for clear 'flint' and pale-green bottles. 116
Table 12. Summary of dates of forms of finish for clear 'flint' and pale-green glass. 117
1.0 INTRODUCTION

The majority of early Australian glassware and a high percentage of later glassware is undecorated and unembossed. Often, in order to date and identify a plain glass item it is necessary to establish its method of manufacture and historical context. For this reason an illustrated outline is given of manufacturing techniques and equipment, including where possible, dates of manufacturing changes in Australia and overseas, and changes in appearance that result from technical innovations.

Particularly from 1830-40 onwards, the use of moulded designs and embossed lettering on glass became popular. Fortunately, the identification of designs and letters on bottles such as medical cures, food and carbonated drink containers, may provide evidence for the date of manufacture and function of glassware.

2.0 TRADITIONAL BLOWING AND FORMING

2.1 Traditional methods

The first imports of glassware into Australia were manufactured by traditional methods which had remained virtually unchanged since their inception. Figure 1 illustrates these same processes in operation in Australia about 1878.

Figure 1. The Australian Glass Company's works in Richmond, Victoria c. 1878. The Illustrated Australian News. Melbourne, 10 June 1878, p. 105.
The major stages in traditional glass manipulation are illustrated and described below and may be identified in the early artist’s impression, Figure 1.

a. The gathering end of the hollow blowing iron is dipped and rotated on the surface of the syrupy glass in the pot or tank furnace so that a quantity of glass wraps around the end.

b. The glass is rolled on a smooth plate called a marver to shape it. This procedure is known as marvering.

c. A small bubble is blown in the glass by the craftsman blowing down the pipe. A further heavier gather may be needed to get the right quantity of glass for subsequent operations.

d. The glass is necked to reduce the waste glass (or moyle) on the blow-pipe and form the neck.

Figure 2 a-d. The major stages in traditional glass manipulation.
TRADITIONAL BLOWING AND FORMING

e. The glass is shaped in a hollow wooden block mould as required. This procedure is sometimes referred to as 'blocking'.

f. The glass is blown further.

g. Shaping continues by patting on a flat plate.

h. The glass may also be swung for shaping by elongation.

Figure 2 e-h. The major stages in traditional glass manipulation.
i. The half-formed shape or parison that results is rotated and further tooled on the chair. The skilled craftsman uses appropriate tools and reheats the glass when necessary.

j. A second member of the team (or 'chair') gathers an amount of hot glass on the end of a solid iron rod termed a pontil and mavors it.

k. The pontil rod is precisely centred on the partly shaped bubble of glass opposite the blowing iron. See Fig. 3.

l. The blowing iron is broken away ('cracked-off') with a sharp-edged dampened steel.

m. The glass is reheated to a higher temperature at the mouth of the main furnace or subsidiary furnace often called a 'glory hole'.

Figure 2 i-m. The major stages in traditional glass manipulation.
n. The vessel is sheared to size and the edge glazed-over (fire-finished).

o. The vessel can now be opened-out and shaped with tongs.

p. Attachments such as jug handles are applied hot from another steadied gathering iron.

q. Directly after stage m, a collar (often called a string-rim) may be applied as a hot viscous stream from a steadied gathering iron to a rotating bottle shape. This process is illustrated in Fig. 4.

r. After breaking off the pontil rod (not illustrated), the jug or bottle is then carried in a wooden or sheathed metal fork or box-shaped carrier to the annealing oven. There, it is slowly cooled to room temperature in the oven over several hours. The latter process is called annealing.

Figure 2 n-r. The major stages in traditional glass manipulation.
Traditional methods of free-blown glass manufacture are still practiced today as shown below in Figures 3, 4.

Figure 3. Centring and attaching the glass-tipped pontil so that the shape rotates on its axis during later manipulation. (O. Jones, Parks Canada Glass Glossary, Environment Canada - Parks, 1985 p. 20)

Figure 4. Applying a stream of additional hot glass from a steadied blowing-iron to form a reinforcing collar (often called a string-rim) round the cracked-off neck of the bottle. The glass-tipped pontil iron, which supports the bottle, is slowly rotated by the craftsman on the arms of the glass-maker's chair. (O. Jones, Parks Canada Glass Glossary, Environment Canada - Parks, 1985 p. 20.)
The tools used in these traditional methods are relatively simple as the selection in Figure 5 illustrates.

a. **Blow-pipe** - a hollow metal rod for gathering and manipulation.

b. **Pontil** - solid metal rod used for gathering, support and manipulation.

c. **Ruler** - metal, used for measurement.

d. **Shears** - large and made of metal for cutting stiff glass.

e. **Pointed tool** - metal point in a holder for grooving and opening.

f. **Tongs or Pucellas** - large blunt metal or wooden-tipped tongs (similar to sugar tongs) for smoothing, elongating and opening stiff glass.

g. **Paddle** - surface-charred wood for flattening and shaping.

h. **Pincers** - made of metal for holding, grooving and tapering.

i. **Cup or Block-mould** - surface charred wood for rounding and shaping.

Figure 5. Simple tools used to manipulate molten glass.
2.2 Characteristics of glass made by traditional methods

The use of traditional tools, such as those illustrated in Figure 5, produces glassware which may exhibit any or all of the following characteristics in Sections 2.2.1 - 2.2.7. However, it should be noted that as a result of the artistic freedom of blowing glass by the traditional methods illustrated in Figures 2a-r, there is sometimes little or no evidence of marks on the surface of the finished glass. Consequently, it can be quite difficult to assess how glassware of the highest artistic standards was made.

2.2.1 Free-blown fire-polished surfaces. These are formed when glass is blown and shaped freely in air and does not contact tools or moulding surfaces. Such freely-cooled surfaces are quite smooth and brilliant unless the bulk glass itself is poorly melted and shows striae, or streaks, of differing composition or colour. The surface of the glassware will also be free of raised seam marks (formed by joints in moulding equipment) or other tool marks. The terms free-blown, hand-blown and hand-made are sometimes used quite loosely to describe traditionally blown glassware. However, the term free-blown cannot be used when hand-gathered glass is blown into moulds.

2.2.2 Striae. The striae in the foot of a wine glass in Figure 6 are caused by slight differences in refractive index within the bulk glass. The rapid stretching of the hot glass, by spinning in a former, causes circular flow lines and accentuates any refractive index differences occurring during rapid cooling.

![Figure 6. The foot of a wine glass made by spinning in a former, shows circular striae (from slight refractive index differences in the bulk glass) and circular turn marks. (Photo David Kemp.)](image)

2.2.3 Turn marks are formed on the surface of traditionally blown glassware as a result of movement between the glass and the surface of any former or mould. These markings, particularly in clear glass, are readily visible on holding the glassware at an angle to the light. Obvious turn marks often occur on the surface of round bottles which have been formed by rotating the glass on the pipe in wooden or paste-moulds. These marks occur particularly after c. 1870 when paste-moulds were invented and labelling was more widely adopted.
2.2.4 **Tooling marks** result from the use of tongs or other tools for shaping stiff glass using considerable force. These marks are usually much deeper than turn marks and may form quite deep grooves in the surface. For example, twisted folds (which may be up to one millimetre wide) often occur in the neck of a free-blown bottle where the glass has been subject to **necking** by the tongs. (Fig. 7) Tongs are used to ensure that the neck is as narrow as required and the amount of waste glass (**moyle**) left on the blow-pipe is minimal.

![Diagram of additional reinforcing glass wrapped around the top of a bottle showing twisted folds and tool marks.](image)

F Twisted folds in the neck

TJ Tooled join of additional shaped glass around the neck.

Light surface turn or tool marks (not shown) are usually visible on the collar.

Figure 7. Diagram of additional reinforcing glass wrapped around the top of a bottle showing twisted folds and tooled join. The process of adding glass is similar to that shown in Figure 4.

Apart from light-walled glass bulbs and phials, which are still made by machine spinning, the existence of such turn and tool marks on pieces of glass is an indication of traditional manufacture. For commercial glass such as bottles, these marks usually mean their manufacturing date is before c. 1900-20.

2.2.5 **Join marks** (which may be tooled or untooled) are formed by the natural flow line of hotter viscous glass as it joins with cooler, stiffer glass, usually in the later stages of the traditional process. Their appearance depends on the shape of the glass parts to be joined and the extent to which the glass has been further reheated and shaped by tools or formers.

For example, **untooled** joins occur at the two ends of a traditionally made jug handle (Fig. 2p), at the join of the stem and base of a wine glass (Fig. 6). They also occur at the horizontal inner join of the hot glass layer wrapped around the top of a handmade bottle (Fig. 8b) and this particular join is an identifying feature of most traditionally made bottles after c. 1800. Its existence can be confirmed by holding the neck and collar up to the light or by carefully placing the finger inside the neck of the bottle.

The join of two pieces of hot fluid glass is not often so clearly visible - the shaped or tooled overlapping ends which constitute the collar of a traditionally made bottle, often form a fine tongue-shaped marking (**TJ**...
as illustrated in Figure 7). The shape of this mark will depend on the shape of the ‘tail’ left after cutting the stream of hot glass when the collar is applied (Fig. 2q).

This type of **tooled join** is a feature of many traditionally made bottles. However, the join can be completely obliterated by rotation against a moulding surface as in Figure 8a, when the overlapping ends are hot and fluid where they join.

![Diagram of tooled join](image)

Figure 8. Additional reinforcing glass on bottle top showing turn marks and inner joint.

2.2.6 Pontil marks

Pontil marks are formed on the base of glassware where the pontil rod is broken off the main body. They are essentially circular and rough and often display surface cracking and adhering glass particles. In crystal tableware the pontil mark is usually ground away. Consequently, the area of attachment of the pontil may only be detectable by a slight difference in reflection over a circular area of the under surface.

In bottles, the pontil mark is inside the push-up at the base of the bottle. Variations in the appearance of the pontil mark and changes in the shape
of the push-up can imply differing empontillation techniques (Fig.9). (See also Sections 4.1, 4.2.)

Figure 9. Three early beer or wine type bottles from Camden. The first shows a jagged pontil scar often referred to as a glass-tipped or 'open' pontil mark. The second shows a less sharp pontil mark. In the third, the pontil has been attached over a wider area and was probably a 'sand-pontil'. (J. Vader & B. Murray, *Antique Bottle Collecting in Australia*, p. 5.)

2.2.7 Non-repetitive shapes are usually formed by traditional blowing and forming methods. The items are often not uniform in size and shape from piece to piece compared with moulded glassware, although the skill of the glass-blower should not be underrated in this respect. To some extent moulded glass may also have some of these characteristics, as the glassware can distort (or slump) if overheated during annealing. Crude methods of moulding can also result in slight variations in dimensions.

2.2.8 Summary. The identification of features such as the presence or absence of turn marks (Section 4.4.4), pontil marks (Sections 4.2, 4.3.3) and particularly tooled additions, such as collars in bottles (Sections 5.1 - 5.10), can provide considerable guidance in dating and identifying traditionally blown glass. However, dating can prove difficult if only the preceding seven basic characteristics are considered without a detailed knowledge of shape and style development.

2.3 Early glassware and forming methods in historical context

Establishing the date of manufacture and the function of a piece of glassware is usually also dependent on a knowledge of the historical development of shape and style of such articles during the period of their manufacture.
TRADITIONAL BLOWING AND FORMING

The following examples of Australian glassware, designed and used for specific purposes during the first half of the nineteenth century, have been selected to illustrate the value of using combined archaeological and documentary material. From such evidence it is often possible to deduce the timing of changes in styles and of the introduction of new blowing and moulding techniques. Advertising material from the Sydney Herald, Sydney Morning Herald (S.H.) and the Sydney Gazette (S.G.) is particularly useful.

2.3.1 Tableware. One of the features of the period up to c. 1840 was the high standard of living adopted by the military and free settlers. This standard is reflected in early references to imports of lavish goods such as mirrors, candelabra and tableware. The tableware included tumblers, goblets, rummers, claret glasses, decanters, carafes, jugs, fingerbowls, wine-coolers, cruet bottles, salts, custards, jelly-glasses, butter dishes and candle shades. In spite of an early attempt to manufacture glass locally by Simeon Lord and John Hutchinson (SG 6.6.1812), Britain provided the major source of such glassware for many years. (Ref. 82). Of the many British companies involved in exports from London, Leith, Cork and elsewhere between c. 1750-1830 some are known to have exported tableware - such as: Whitefriars Glassworks off Fleet Street, London (later James Powell & Sons) (Ref. 82), Apsley Pellatt & Co., the Falcon Glassworks, Blackfriars, London (Ref. 70), Caledonian Glassworks Ltd. (later Holyrood Flint Glassworks, Edinburgh, Ref. 82), and the Cork group of companies (Ref. 79). The Cork group was then free of the British tax on glass and included the major companies of Cork Glass Co. (1783-1818), Waterloo Glass Co. (1815-35), and the Terrace Glass Works (1818-41).

At times it is possible to document sources, designs and dimensions of imported wares.

For example, although the Napoleonic Wars probably prevented import of the well-documented Waterford designs (Ref. 79) during c. 1790-1820, a John Atkinson 'opened':

'... an elegant Assortment of Rich DIAMOND CUT GLASS WARE consisting of Quart and Pint Decanters, Water Jugs, Wine Glasses, Coolers, Shades etc ... [sic]' (S.G. 14.8.1823 p. 4)

The popular Anglo-Irish three-ring decanter design is extensively documented. (Refs 82, 78) For example, 100 dozens each of quart, pint and half pint three-ring decanters were imported from London by Michael Phillips, Kent Street, Sydney on the Francis Charlotte (S.G. 7.11.1835, p. 3).

The Jelly Glasses in Figure 11 were possibly imported from Pellatt & Co., Falcon Glassworks, Southwark, London, in 1832 (Ref. 39). Pellatt claimed at the time that they were made from sand sent by James King from Sydney. This claim seems unlikely as our local sands contain heavy minerals which would discolor the glass. The non-pontilled Jelly Glass
corresponds closely to design No. 19 listed in Apsley Pellatt's catalogue published about 1840. A general assortment of tableware from this company, stated to be made from sand on the Vaucluse estate of W.C. Wentworth was also imported (S.G. 11.11.1840). The major feature of the glasses is the simply moulded half fluting.

Figure 10 a,b. Early Anglo-Irish style tableware. (Reproduced by kind permission of the Trustees of the Museum of Applied Arts and Sciences.)

Figure 11. Jelly Glasses possibly made from sand sent by James King to the Falcon Glassworks of Pellatt & Co., London. c. 1832 (Ref. 39). (Reproduced by the kind permission of the Trustees of the Museum of Applied Arts and Sciences. MAAS A365/1:2)
Many of the decanters, fingerbowls, butter dishes, jugs (Refs. 78, 82) and carafes between c. 1820-60 also had similar distinctive base flutings which were formed using simple wooden patterned dip moulds (Fig. 11). Some Irish companies lightly inscribed their names on the bases of individual pieces. The prevalence of such designs from both English and Irish sources, is apparent from Apsley Pellatt’s catalogue. Further evidence of these designs in the form of ribbed and cut salts, ringed carafes and decanters and cut wine glasses is to be found in artefacts from wrecks off the Western Australia coast - the wrecks of the *James Mathews* (1841) and the *Eglinton* (1852) and in recent finds in wells in the Rocks area of Sydney.

![Designs of glass cadies from Apsley Pellatt catalogue c. 1840](image)

Figure 12. Designs of glass cadies from Apsley Pellatt catalogue c. 1840 (Hugh Wakefield, *Early Victorian Styles in Glassware*, p. 50.)

The comparison between Apsley Pellatt’s design b (Fig. 12) for a moulded glass cadie, c. 1840, and a Cadie from the wreck of the *Eglinton* (Fig. 13) serves to emphasise that identification of whole or fragmented
free-blown tableware, is usually dependent on a detailed knowledge and recognition of shape and style.

These examples of fluted and octagonal shaped tableware confirm the early adoption of a high standard of moulding from c. 1750-80 onwards. Indeed, cut and engraved tableware at the 1851 exhibition is comparable with that made today. This development contrasts with the later and slower adoption of moulding methods for common beer and wine bottles.

2.3.2 Typical apothecaries’ glassware is illustrated in the trade card of the London firm Price & Co. (Fig. 14) and in an 1824 painting by E. Bristow (Fig. 15). Price’s ‘Essential Salt of Lemons ... perfumeries etc ...’ are noted as being on sale in Sydney in the early 1800s (S.G. 5.8.1830, p. 3).

![Image](image-url)

Figure 14. 1809 Trade Card of Price & Co., Chemists and Druggists. (Crelin & Scott, *A Survey and Guide to the Wellcome Collection of British Glass, 1600-1900*, p. viii, Fig. 1.)

Apothecaries’ glassware was used for four main purposes: show-globes and jars for display, carboys for liquid storage and display, phials and medical flats for dispensing and ground stoppered bottles for storage (Figs 14, 15, Ref. 47).

Advertisements in the *Sydney Gazette* of 1834 and 1835 indicate that the capacity of show-globes used in Australia was up to approximately 12 quarts (13.6 litres) (S.G. 4.9.1834, p. 1). In 1843 show-jars and cylinders were sold as part of the insolvent estate of J.A. Campbell, Druggist, George St Sydney (S.H. 4.9.1843, p. 3). Eight fluid ounce (227 mL) and sixteen fluid ounce (454 mL) cylindrical and conical glass measures,
together with graduated wine glasses, were also auctioned during the "hungry forties" (S.H. 18.3.1845, p. 3).

Show-globes etc. are one type where little or no change in style or manufacturing technique took place from approximately 1750 to as late as 1920. Apart from turn-marks, due to the use of paste-moulds as opposed to free-blowing after c. 1880, or the presence of gilding, lettering or other decoration, there appears to be no way to date such glassware other than by comparison of glass density values or composition, or by detailed laboratory inspection of the surface.

Figure 15. The interior of an apothecary's shop painted in 1825 by E. Bristow showing apothecaries' glassware. (Crelin & Scott, A Survey and Guide to the Wellcome Collection of British Glass, 1600-1900, Fig. 5, p. 7.)

In some instances it may be possible to make direct comparison with manufacturers' catalogues of the period. However, despite detailed research and access to information by suppliers back to 1750, the Wellcome Institute in London does not venture to place a date on any one item of its collection of this type of apothecaries' glassware. (Ref. 47.)
Early apothecaries’ phials for dispensing were small rounded flared lip bottles (Figs 16, 17). By the 1840s phials were available in ‘best green’ or ‘whites’ (clear) and in a range of standard capacities: ½, 1, 2, 4, 6, 8, 12 and 16 fluid ounces (usually measured to the neck/shoulder join). This practice continued right through to the first half of the twentieth century. Phials and medical flats were described by their capacity e.g. a ‘four ounce phial’ or an ‘eight ounce flat’.

The Famous CORDIAL NIGHT DROPS, being the best STOMACH MEDICINE yet known, restoring the Appetite when impaired and destroying the Fatigue of the Body, and reviving languishing Nature: They make the Body cheerfal and vigorous, and are a powerful Medicine in all Pains whatever. They stay Vomiting by strengthening the Stomach and are an admirable Preservative when the Air is foul and infectious, for the Body that has received any Infection, they kindly throw it off by a gentle Sweat or a more powerful One, as you shall see Occasion. They may be given to Women with Child, or in Child-Bed; and they prevent Malignant, if hitherto, they are good in most Disorders of the Body, and may be safely call’d, The Poor Man’s Treasury. They are sold no where in Norwich, but at CROSS-GROVE Printing-Office in St. Giles’s, at One Shilling a Bottle, with a printed Bill of Directions.

Figure 16. Advertisement from the *Norwich Gazette* of 1727 showing a woodcut of an apothecary bottle. (From: G. Wills, *English Glass Bottles*, 1974)

Special types of bottles were sometimes used for ‘cures’. As in the U.S.A., the popular British cure, Daffy’s Elixir (1680) and Turlington’s Balsam of Life (1744) were imported into Australia quite early (S.G. 15.4.1820, p.4, 13.3.1823, p. 1). Although Daffy’s Elixir is thought to have been sold in all kinds of bottles (Ref. 81), Daffy’s empty bottles, presumably of a type identifiable to buyers, were auctioned in Sydney on 22 April 1842. Later in the century, Daffy’s was sold in the U.S.A. in octagonal bottles with moulded lettering on the body. Initially, Turlington’s Balsam, was sold in violin-shaped bottles (Ref. 13). One example in the U.S.A. carries the embossed date 25 March 1750 (Ref. 81), thus making it one of the earliest apothecaries’ bottles marked in this way. A wide variety of such cures was marketed in Australia, in Europe and in the U.S.A. throughout the nineteenth century.

Apothecaries’ storage bottles normally have ground glass stoppers, are both round and square, gilt-decorated and labelled, and in sizes ranging up to one quart (40 fluid ounces, 1.1 litres) capacity (e.g. S.H. 18.7.1843, p. 4).

From the above evidence it appears that dispensing and storage bottles, particularly clear or pale-green bottles of capacity below about 6 fluid ounces (0.17 litres), are likely to be found in Australia with engraved lettering or designs (Section 4.4.5.) from first settlement, in marked contrast to common dark-green (‘black’) or amber glass artefacts. In these colours embossed lettering rarely occurs, at least on the body of the bottles, before the introduction of machine made bottles after c. 1900-20.
2.3.3 Food bottles. The expensive clear and pale-green bottles were also used for early imports of bottled foods (Fig. 18). These imports constituted a semi-luxury trade. Preserved fruit, for example, 'English preserved gooseberries in bottles' (S.G. 9.7.1809, p. 1), 'pickles and squares' (S.G. 11.10.1826, p. 4), cost up to five shillings per bottle - that is, above the daily wage levels.

Documentary evidence indicates that square-shaped bottles were used for pickles and bottled fruit in the 1830s. For example, ‘... sixteen Flint [clear] Glass Squares containing twenty lbs of Rhubarb.’ were advertised for sale in Sydney in 1836 (S.G. 7.5.1836, p. 3).

Mustard was among the many imports of spices. Of a number of references to mustard imports, and particularly to Durham mustard (S.G. 8.10.1809, p. 1, S.G. 28.4.1821, p. 4), some imports appear to be in one quarter, half and one pound bottles (S.G. 2.1.1828, p. 4). Using a wide range of documentary and archaeological evidence, Olive Jones has characterised the different forms of powdered mustard bottles over the period c. 1750-1900 (Ref. 19). Jones’ findings imply that the imports reaching Australia would probably be flat octagonal bottles with embossed lettering on the body, rather than the small two ounce, 1⅛ inch (approx. 38 mm) squares.
Primary evidence for the shape of food bottles is provided by wrecks in West Australia (Figs 18 a-d). Two complete, round preserve bottles, and several bases and necks, with wider than usual mouths (31.8 mm, 1\(\frac{1}{4}\) inch bore), together with an octagonal fluted pale-green '2 lb' or reputed quart pickle, and part of a flat octagonal green bottle with fluted corners, were all found on the *James Mathews* (1841). Two tall, round, pale-green bottles containing black currants and several square, pale-green pickle jars with fluted corners, two with cork and lead foil seals marked "Gunter & Co, Berkley Square, London", were found on the wreck of the *Eglinton* (1852).

The use of moulded and sometimes embossed bottles of the more expensive clear and pale-green glass constituted a semi-luxury trade. The lesser amounts of these types of artefacts contrasts with the predominance of unmoulded and unembossed 'black' glass artefacts found in this early period.

![Typical shapes of early food bottles](image)

Figure 18 a,b. Typical shapes of early food bottles.
Wine/beer bottle characteristics. Common 'black' bottles were manufactured cheaply from impure materials and were used for a variety of purposes. Changes in their shape and form are closely associated with changes in forming and moulding techniques. These are described in detail in Sections 4.1-4.4.

For bottles containing special wines, the practice developed of placing a blob of hot glass on the side of the bottle, on which the date of the vintage, the name or trade mark of the brand, or the name of the owner, was impressed with an engraved metal seal.

After the close of the Napoleonic wars a wide variety of these vintage wines was imported into Australia, including for example, '50 dozen cases of very superior Champagne, 50 ditto ditto Lafitte claret, Si