Rail Infrastructure Noise Guideline

Draft for Consultation
Submissions invited

Comments are invited on any concerns you have with this draft. Where concerns are raised, recommended changes to address these concerns would be valued. Please send your submissions on the consultation draft by email to: railnoise.guide@environment.nsw.gov.au.

or by post to:
Noise Policy Section
Office of Environment and Heritage
Department of Premier and Cabinet
PO Box A290
Sydney South 1232

Closing date for submissions
Submissions must be received by 5pm, Friday 30 March 2012

© Copyright State of NSW and the Office of Environment and Heritage

With the exception of photographs, the Office of Environment and Heritage and State of NSW are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs.

The Office of Environment and Heritage (OEH) has compiled this guideline in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs.

Published by:
Office of Environment and Heritage
59–61 Goulburn Street, Sydney NSW 2000
PO Box A290, Sydney South NSW 1232

Report pollution and environmental incidents
Environment Line: 131 555 (NSW only) or info@environment.nsw.gov.au
See also www.environment.nsw.gov.au

Phone: (02) 9995 5000 (switchboard)
Phone: 131 555 (environment information and publications requests)
Phone: 1300 361 967 (national parks, climate change and energy efficiency information and publications requests)
Fax: (02) 9995 5999
TTY: (02) 9211 4723
Email: info@environment.nsw.gov.au
Website: www.environment.nsw.gov.au

ISBN 978 1 74293 296 5
OEH 2012/0057
February 2012

Printed on sustainable stock
Contents

1 Introduction .. 1
 1.1 Role of this guideline in managing noise and vibration from rail activities 1
 1.2 Who is this guideline for? .. 2
 1.3 Guideline objectives ... 2
 1.4 Rail infrastructure projects to which this guideline applies 2
 1.4.1 Heavy rail projects .. 3
 1.4.2 Light rail projects .. 4
 1.4.3 Residential and non-residential noise receivers 4
 1.4.4 Rail traffic-generating developments .. 4
 1.5 Excluded from this guideline .. 5

2 Noise and vibration trigger levels .. 7
 2.1 Trigger levels used in this guideline ... 7
 2.2 Noise descriptors used in this guideline ... 7
 2.3 Airborne noise trigger levels for heavy rail .. 8
 2.4 Airborne noise trigger levels for light rail .. 8
 2.5 Ground-borne noise trigger levels ... 13
 2.6 Vibration trigger levels .. 14

3 Assessment of noise and vibration impacts ... 15
 3.1 Applying noise and vibration trigger levels and determining feasible and reasonable mitigation measures ... 15
 3.2 Community consultation ... 15
 3.3 Matters to cover in a rail noise and vibration impact assessment report 18
 3.3.1 Shared rail corridor .. 18
 3.3.2 Describe the track layout, sensitive development locations and proposed operations ... 18
 3.3.3 Determine the appropriate noise and vibration trigger levels 19
 3.3.4 Establish the level of existing noise and vibration (if present) 19
 3.3.5 Predict the impacts of the rail infrastructure proposal 19
 3.3.6 Identify potential mitigation measures .. 20
 3.3.7 Develop a monitoring regime ... 21
 3.4 Measuring existing levels of rail noise and vibration 21
 3.4.1 Airborne noise ... 21
 3.4.2 Ground-borne noise .. 22
 3.4.3 Vibration ... 23
 3.5 Mitigating noise from railways .. 23
 3.5.1 Types of mitigation measures ... 23
Appendix 1 Rail noise initiatives ...26
Appendix 2 Environmental assessment requirements for rail traffic-generating developments ...27
Appendix 3 Comparison of airborne noise levels for rail operations in Australia and overseas ...28
Appendix 4 Studies in reactions to noise ...31
Appendix 5 Feasible and reasonable mitigation ..34
Appendix 6 Horn use as a safety measure ..35
Appendix 7 Noise predictive models ..36
Glossary ...37
References and further reading ...39
1 Introduction

Better transport is a key objective of the NSW Government. It includes improved public transport and increased movement of freight by rail. The growth of our rail transport network brings many benefits to the wider community. These include reduced fuel use and air pollution, lower greenhouse gas emissions, less road congestion and better safety. Rail transport is a vital component for achieving sustainable cities and preserving the environment.

Nevertheless, adverse effects on residents living alongside rail lines can occur from exposure to increased train movements, extended rail operating hours and development along transport routes that is not designed to mitigate noise and vibration. The extra noise may disturb sleep, causing stress and annoyance. It can also interfere with daily activities including talking, hearing and studying. These impacts need to be managed to protect the amenity and wellbeing of those local communities living near rail lines.

Rail operations can be inherently noisy. Relatively high noise levels may still occur even after all feasible and reasonable means of mitigating the noise have been applied. A suite of initiatives is needed to address existing rail noise, including limiting noise from rolling stock and providing avenues for relief for those acutely affected by rail noise. Better planning to achieve more liveable cities has resulted from the introduction of the State environmental planning policy (infrastructure) 2007, which sets mandatory internal noise levels for bedrooms and other key rooms in residences built near rail lines.

When new rail lines are being built, or existing lines redeveloped, attention needs to be paid to controlling noise. This guideline is designed to assist the ongoing expansion and upgrade of rail transport by ensuring that potential noise impacts associated with rail infrastructure projects are managed effectively.

1.1 Role of this guideline in managing noise and vibration from rail activities

The precursor to this guideline, known as the Interim guideline for the assessment of noise from rail infrastructure projects (IGANRIP) (DECC 2007) was released in April 2007. Since then it has been trialled on heavy rail projects in NSW.

This guideline has been revised for public consultation and industry feedback. Its purpose is to ensure noise and vibration impacts associated with particular rail development projects are evaluated in a consistent and transparent manner. It applies to heavy and light rail infrastructure projects including the construction of new rail lines and upgrades to existing lines. It provides a procedure for the consideration of feasible and reasonable noise mitigation measures that form part of a noise impact assessment (NIA) that will be used by planning authorities to assess rail projects. The Environment Planning and Assessment Act 1979 (EP&A Act) specifies when an environmental assessment is required.

This guideline is one component of a number of rail noise initiatives being developed to manage the environmental impacts of noise and vibration from the NSW rail system. The other complementary initiatives aim to reduce noise and vibration impacts from existing rail operations, which have mostly grown over a long period of time. These include:

- a noise abatement program to address existing acute levels of heavy rail noise on a priority basis
- planning guidelines for new residential developments alongside rail lines
- rolling stock standards to improve noise and other emissions from these sources.

These are described at Appendix 1.

Effective management of rail noise requires the combined efforts of rail infrastructure owners and developers, rail operators, freight owners, train manufacturers, regulatory and planning...
authorities, port facility operators, residential developers and the community. Figure 1 (page 6) outlines the extent of the current heavy rail network in NSW.

1.2 Who is this guideline for?

This guideline is for rail infrastructure proponents (both private and public), consent/approval authorities, designers, engineers and contractors involved with the design, approval, construction and development of heavy and light rail infrastructure projects in NSW. It will help assess the potential noise and vibration impacts associated with the ongoing expansion and upgrade of the rail network in NSW.

Triggers for assessing rail traffic-generating developments are outlined in Appendix 2. These are non-rail land-use developments that will generate rail traffic through the nature of their operation; e.g. mines and extractive industries.

This guideline may also be a point of reference for planning or regulatory authorities assessing railway-related activities not subject to approval under the EP&A Act or the Protection of the Environment Operations Act 1997 (POEO Act) such as:

- rail activities not requiring an environment protection licence
- heritage railway operations.

1.3 Guideline objectives

The purpose of this guideline is to specify noise and vibration trigger levels for assessing heavy and light rail infrastructure projects to protect the community’s amenity and wellbeing.

It is designed to streamline decision-making processes by providing consistent and transparent procedures for determining appropriate mitigation for rail infrastructure developments that have potential noise and vibration impacts. A focal concern is to identify impacts from additional traffic on redeveloped rail lines. The key aim is to minimise noise exposure levels from new rail line developments or significant redevelopment of existing rail lines. The procedures outlined should be considered in a project’s noise impact assessment process.

When government agencies review environmental assessments, environmental impact statements, statements of environmental effects or reviews of environmental factors for rail projects or land-use developments generating additional rail traffic, they should assess these proposals against the requirements in this guideline.

1.4 Rail infrastructure projects to which this guideline applies

This guideline applies to proposed rail infrastructure projects that would be assessed and determined under the EP&A Act or that are likely to be licensed under the POEO Act. It takes a project-based approach to the consideration of noise mitigation measures for areas impacted by rail infrastructure. It applies consistently to passenger and freight rail in urban, suburban and rural settings. The noise and vibration trigger levels presented in Tables 1−4 (pages 10−14) indicate when noise mitigation measures should be considered. If the environmental impact assessment of a proposed rail project shows that the trigger levels are likely to be exceeded, the assessment is required to outline feasible and reasonable noise mitigation measures that could be implemented to ameliorate the predicted impacts. (Section 3.1 provides advice on applying the triggers.) This guideline should be used whenever there is potential for noise and vibration impacts from heavy and light rail infrastructure projects.

1.4.1 Heavy rail projects

In NSW, heavy rail is considered to be rail infrastructure and its associated rolling stock that operates in dedicated rail corridors for either passenger and/or freight transportation which
may be electrified or hauled by diesel locomotives. Heavy rail generally operates at higher speeds and has a higher carrying capacity than light rail.

Heavy rail projects to which this guideline applies are as follows.

1.4.1.1 New rail line

A new heavy rail line development is one where a rail infrastructure project is to be developed on land that is not currently an operational rail corridor.

Typically this will involve a rail line being developed on land that has not previously had a rail line or on land where there is an existing rail line that is being substantially realigned outside the existing rail corridor.

‘Substantially realigned’ means the track is moved sufficiently to allow new noise mitigation options to be considered that would not have been feasible if the track had not been moved.

1.4.1.2 Redeveloped rail line

Redevelopment of a heavy rail line occurs where any rail infrastructure project is to be developed on land that:

• is located within an existing and operational rail corridor where a rail line is or has been operational; or
• is immediately adjacent to an existing operational rail line which may result in widening of an existing rail corridor.

Typically this will be where works on an existing rail line are proposed that will increase its capacity to carry rail traffic or alter the track alignment through design or engineering changes. In practice this often means duplicating track within an existing rail corridor. The Kingsgrove to Revesby quadruplication project is an example.

A disused heavy rail line that is brought back into use should be assessed as a redevelopment under this guideline, unless the corridor has been substantially realigned in which case, the realigned section should be assessed as a new rail line. For example, a rail duplication project could require a section of track to be constructed outside the current corridor because constructing that section within the corridor would bring it too close to existing residences. The section to be constructed outside the existing corridor could allow for a noise barrier to be built which would not have been possible had the line not been moved onto the new path. This section would be considered a ‘realigned’ section of the project and should be designed to meet the more stringent ‘new’ noise trigger levels even though it is part of a redevelopment project.

1.4.1.3 Other rail works

This guideline applies to all heavy rail infrastructure redevelopments including works such as crossovers, sidings, turnouts, loops, refuges, relief lines, straightening curves or the installation of track signalling devices. These should be assessed in accordance with the redeveloped rail line trigger levels.

1.4.2 Light rail projects

Light rail refers to a passenger transport system that generally operates at a lower speed and capacity than heavy rail, does not use locomotives to haul the carriages and may operate on shared roadways with other road vehicles.

All proposals for light rail projects, whether they are new developments in greenfield areas or redevelopments in existing rail corridors, are evaluated against the same trigger levels.

1 An ‘operational rail corridor’ is a rail corridor on which rolling stock is operating.
This guideline applies to all light rail development including works such as crossovers, sidings, turnouts, loops, refuges, relief lines, straightening curves or the installation of track signalling devices.

1.4.3 Residential and non-residential noise receivers

This guideline recognises that in some cases there may be land uses that are particularly sensitive to noise and where more stringent triggers are appropriate. Specific triggers have been set for schools, hospitals, places of worship and recreational areas so the characteristic activities for each of these land uses will not be unduly disturbed.

When identifying land uses and noise receivers, both existing and planned development should be considered. Planned development is where an approved development consent, staged consent or master plan or the like identifies building locations.

In all cases, noise impacts on existing land uses must be identified and assessed. When assessing the noise impacts on planned development near a rail corridor, a range of matters should be considered, including but not limited to:

- the type of consent or approval
- the existing noise environment, including existing rail-noise sources and whether the rail development under assessment is for a new or redeveloped rail line
- the proposed future character and land-use objectives for the area, e.g. an area may be identified for future urban growth
- whether the planned development has contemplated or assessed existing or future rail-noise sources.

For example, a proponent of a rail infrastructure project should assess noise impacts on future residences near the rail corridor (that are not yet built) if it was unreasonable for the developer or the consent authority of that housing to have considered rail noise impacts. This would be because the rail project was not expected or proposed at the time the development consent was given for the housing.

Conversely, it would be reasonable for a developer and consent authority to consider rail noise from existing and approved future rail infrastructure projects (and/or corridors) in a proposed land use that adjoins either an existing rail line or an approved future rail infrastructure project (and/or corridor). The development should take into account all the requirements for sensitive receivers as described in the Infrastructure SEPP. It is recommended that potential issues, if they arise, be discussed with administering authorities and relevant track owner(s).

1.4.4 Rail traffic-generating developments

Some industries, such as mining and extractive industries, may generate additional rail traffic that can increase the noise from a rail corridor significantly. When reviewing environmental assessments, environmental impact statements, statements of environmental effects, or reviews of environmental factors for such land-use developments, government agencies should assess the potential noise from rail generating developments against the requirements detailed in Appendix 2.

1.5 Excluded from this guideline

This guideline does not apply to:

a. Mitigation of noise and vibration impacts from existing rail operations when assessing predicted noise from a proposed rail project. This is because it is not reasonable to expect a rail project to mitigate existing noise levels if the project is not going to be a significant contributor to overall rail noise levels in the corridor.
b. The mitigation of noise from existing rail lines where no rail infrastructure projects are proposed (rail noise abatement programs are to be developed to provide relief for those acutely affected by rail noise).

c. The development of residential and sensitive land uses (e.g. schools, hospitals, aged care facilities) next to rail corridors. Internal noise levels have been specified in the Infrastructure SEPP and advice is provided on how to achieve them in the Development near rail corridors and busy roads – interim guidelines (DOP 2008).

d. Routine maintenance of the railway system – the Interim construction noise guideline (DECC 2009) applies.

e. Projects involving maintenance facilities for rolling stock (including stabling yards and shunting operations), which should be assessed in accordance with the NSW Industrial noise policy (EPA 2000).

f. Noise from the construction of a rail project as construction is of a temporary nature and is addressed under the Interim construction noise guideline (DECC 2009).

g. Noise from safety warning devices during rail operations (e.g. warning horns and bells at level crossings); see Appendix 6.

h. Activities exempted from ‘railway systems activities’ under Schedule 1 of the POEO Act¹ which refers to rail activities taking place at fixed locations (stationary noise sources) that are covered by the Industrial noise policy (EPA 2000).

i. Rail lines on an industrial site servicing an industry (e.g. mining) which should be assessed in accordance with the Industrial noise policy (EPA 2000).

j. Occupational noise and vibration, which are regulated by WorkCover NSW under the Work Health and Safety Act 2011 from 1 January 2012.

¹ ‘Railway systems activities’ exempted under Schedule 1 of the POEO Act are activities in a railway workshop; railway fuel depot; railway station building or freight depot. Also exempted are activities such as refuelling of rolling stock; repair, maintenance or upgrading of track away from the track site; loading or unloading of freight onto rolling stock; and the operation of signalling, communication or train control systems.
Figure 1 Map of NSW (reproduced with permission ©Country Rail Infrastructure Authority)
2 Noise and vibration trigger levels

This guideline addresses rail noise and vibration impacts, including:
- airborne noise that is heard at or within noise-sensitive premises
- ground-borne noise generated inside a building by ground-borne vibration from a vehicle passing by on rail
- vibration in buildings that affects amenity.

Airborne noise from rail pass-bys is generated by a combination of noise from the propulsion of the rolling stock (usually diesel or electric locomotives) and from its interaction with the track. This type of noise generally comes from the operation of a surface rail line and reaches a receiver primarily through the air.

Ground-borne noise or regenerated noise in buildings is typically noted at receiver locations where the level of ground-borne noise is likely to be greater than airborne noise (e.g., in buildings above rail tunnels where the airborne noise is masked by the tunnel).

Vibrations in buildings associated with movements on a rail network can cause disturbance and complaint in a similar fashion to noise. Assessment of vibration is dealt with by a separate guideline, as outlined in section 2.6.

A comparison of airborne noise levels for rail operations in other jurisdictions in Australia and overseas is presented in Appendix 3. South Australia and Western Australia have similar criteria to those proposed in this guideline. Most European countries with criteria for rail noise apply separate day and night levels acknowledging the increased annoyance of noise at night.

2.1 Trigger levels used in this guideline

Operational rail noise can have a significant effect on noise-sensitive receivers near a rail line. This guideline specifies noise and vibration trigger levels. If these are likely to be exceeded by the proposed rail development, mitigation measures need to be considered to reduce the predicted noise levels. See section 3.1 for advice on applying the triggers. The noise and vibration triggers in this guideline apply to existing noise-sensitive receivers and future sensitive receivers associated with projects that have planning approvals e.g. land subject to residential development consents, staged consents and master plans.

2.2 Noise descriptors used in this guideline

All the noise trigger levels in this guideline differentiate between noise impacts during the day and at night. A more stringent noise trigger is applied for night-time. It is widely accepted that noise is generally more disturbing at night because more noise-sensitive activities occur at that time (e.g. listening activities and sleep). Also, most residents are at home and noise is more intrusive due to lower background levels at night.

To evaluate predicted rail noise, triggers are provided for both L_{Aeq} (the level of average noise energy over the day or night period which includes maximum noise events from individual train pass-by events) and L_{Am}, which, for the purposes of this guideline, is the maximum noise level not exceeded by 95 per cent of individual train pass-by events. Applying the L_{Am} descriptor for residential land uses recognises that rail noise events are not adequately described for all scenarios by using only the L_{Aeq} descriptor. See Appendix 4.2.1 for more information.

For non-residential noise-sensitive land uses, only L_{Aeq} is applied, as the focus is on speech interference and providing adequate acoustic protection to conduct the activities associated with those land uses.
2.3 **Airborne noise trigger levels for heavy rail**

Trigger levels in this guideline that apply to heavy rail projects relate to:

- the absolute level of rail noise associated with either a new rail infrastructure project or a redevelopment project and
- the increase in the predicted rail noise due to the proposed rail infrastructure project in the case of redevelopments.

If the noise impact assessment undertaken for the infrastructure proposal indicates that the trigger levels in this guideline are likely to be exceeded, a detailed study must be made to evaluate the predicted noise and vibration levels. The predicted levels should then be compared to the noise and vibration trigger levels identified in this guideline. It is then necessary to consider feasible and reasonable mitigation measures.

For heavy rail projects, an assessment of noise impacts and mitigation measures must be considered when an increase in rail noise is predicted to occur (for either L_{Aeq} or L_{Amax}) by the number of decibels specified in Table 1 (page 10) and when the predicted level exceeds the trigger values in Table 1 for residential receivers or Table 3 (page 11) for non-residential receivers. The trigger levels for an increase in the L_{Aeq} and L_{Amax} are set at levels where the increase in rail noise is likely to be perceptible (see Appendix 4).

The trigger levels are more stringent for *new* heavy rail projects than for *redevelopments*. The reason is that it is possible to apply a greater range of noise prevention and mitigation options during the planning stages for new rail projects in greenfields or on land that has not previously had a rail line than for projects in existing rail corridors. There is evidence to suggest that people’s reactions to a newly introduced noise source are considerably greater than reactions to a source that has been present for some time (see Appendix 4.3).

Separate triggers are provided for day and night periods, with a more stringent trigger applied for night. This reflects the need to protect the community from rail-noise related sleep disturbance at night and encourages a greater volume of rail movements to take place during daytime. The 15-hour daytime period is defined from 7 am to 10 pm and the 9-hour night-time period is from 10 pm to 7 am.

2.4 **Airborne noise trigger levels for light rail**

If the noise impact assessment undertaken for a light rail infrastructure proposal indicates that the trigger levels in this guideline for light rail are likely to be exceeded, a detailed study must be made to evaluate the predicted noise and vibration levels. The predicted levels should then be compared to the light rail trigger levels in Tables 2 and 3 (pages 10–11) and consideration given to whether feasible and reasonable mitigation measures need to be explored.

The levels for residential receivers take into account that existing roadways can be converted into light rail corridors. The trigger values for residential receivers in Table 2 (page 10) are divided into day- and night-time periods. Triggers for non-residential receivers of noise from light rail are provided in Table 3 (page 11). Ground-borne noise trigger levels are provided in Table 4 (page 14) and vibration trigger levels are referenced at section 2.6.
The LAmax triggers have been slightly reduced. The noise criteria used for day/evening/night periods were 60/55/50 dB L_{Aeq}. The daytime period was defined as being from 7 am to 7 pm, the evening period from 7 pm to 11 pm and the night period from 11 pm to 7 am.

This guideline proposes that the day/evening/night periods be brought into line with the day/night periods used for other rail projects but that the noise triggers remain more stringent than those for heavy rail, reflecting the capacity for light rail to deliver a quieter mode of transport. Specifying day/night criteria only will make it easier for people to compare noise outcomes with alternative transport options; for example, heavy rail or road options.

The L_{Amax} noise criteria used for Sydney’s current light rail lines was 82 dB(A). This guideline proposes that the trigger value be reduced to an L_{Amax} of 80 dB(A). Current experience demonstrates the reduced level is achievable and the proposed change would bring the L_{Amax} trigger into line with the parameter for ‘new’ heavy rail developments.

Compared to the triggers for heavy rail developments, noise triggers for light rail are more stringent (see Tables 1 and 2 on page 10). This is because modern light rail has many features to minimise noise and vibration. Light rail is generally quieter than heavy rail because the vehicles are shorter in length, locomotives are not used to haul the carriages, the average train speeds are lower and the number of vehicles per day is less.
Table 1 Airborne heavy rail noise trigger levels for residential land uses

<table>
<thead>
<tr>
<th>Type of development</th>
<th>Noise trigger levels dB(A) (External)(^1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day (7 am–10 pm)</td>
</tr>
<tr>
<td>Predicted rail noise levels exceed:</td>
<td></td>
</tr>
<tr>
<td>New rail line development(^3)</td>
<td></td>
</tr>
<tr>
<td>Predicted rail noise levels exceed:</td>
<td></td>
</tr>
<tr>
<td>Development increases existing (L_{Aeq})(^1) rail noise levels by 2 dB or more, or existing (L_{Amax}) rail noise levels by 3 dB or more and predicted rail noise levels exceed:</td>
<td></td>
</tr>
<tr>
<td>Redevelopment of existing rail line(^4)</td>
<td></td>
</tr>
<tr>
<td>Development increases existing (L_{Aeq})(^1) rail noise levels by 2 dB or more, or existing (L_{Amax}) rail noise levels by 3 dB or more and predicted rail noise levels exceed:</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) See technical notes to tables 1, 2 and 3 on page 11
\(^2\) These numbers represent external levels of noise that trigger the need for an assessment of potential noise mitigation measures to reduce noise levels from a rail infrastructure project.
\(^3\) See section 1.4.1.1 for definition of new rail line
\(^4\) See section 1.4.1.2 for definition of redeveloped rail line
\(^5\) \(L_{Aeq}\)\(^\text{period}\) means \(L_{Aeq}\)\(^{15h}\) for the day-time period and \(L_{Aeq}\)\(^{9h}\) for the night-time period.

Table 2 Airborne light rail noise triggers for residential land uses

<table>
<thead>
<tr>
<th>Type of development</th>
<th>Time of day</th>
<th>Noise trigger levels dB(A) (External)(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All light rail line developments(^2)</td>
<td>Day (7 am–10 pm)</td>
<td>60 (L_{Aeq})(^{15h}) 80 (L_{Amax})</td>
</tr>
<tr>
<td></td>
<td>Night (10 pm–7 am)</td>
<td>50 (L_{Aeq})(^{9h}) 80 (L_{Amax})</td>
</tr>
</tbody>
</table>

\(^1\) See technical notes to tables 1, 2 and 3 on page 11
\(^2\) See section 1.4.2 for definition of light rail
Table 3 Airborne rail noise trigger levels applicable to heavy and light rail developments for sensitive land uses other than residential

<table>
<thead>
<tr>
<th>Other sensitive land uses</th>
<th>Noise trigger levels dB(A) (when in use)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New rail line development</td>
</tr>
<tr>
<td></td>
<td>Resulting rail noise levels exceed:</td>
</tr>
<tr>
<td>New rail line development</td>
<td>Development increases existing rail noise levels by 2 dB(A) or more in LA_{eq} for that period and resulting rail noise levels exceed:</td>
</tr>
<tr>
<td>Schools, educational institutions and child care centres</td>
<td>40 LA_{eq}(1h) internal</td>
</tr>
<tr>
<td>Places of worship</td>
<td>45 LA_{eq}(1h) internal</td>
</tr>
<tr>
<td>Hospital wards</td>
<td>40 LA_{eq}(1h) internal</td>
</tr>
<tr>
<td>Hospitals other uses</td>
<td>60 LA_{eq}(15h) external</td>
</tr>
<tr>
<td>Open space – passive use (e.g. parkland, bush reserves)</td>
<td>60 LA_{eq}(15h) external</td>
</tr>
<tr>
<td>Open space – active use (e.g. sports field, golf course)</td>
<td>65 LA_{eq}(15h) external</td>
</tr>
</tbody>
</table>

Technical notes to tables 1, 2 and 3

1. Specified noise trigger levels refer to noise at the receiver location.
2. Noise trigger levels refer to noise from rail transportation only and do not include ambient noise from other sources. In the case of rail redevelopments, compare (a) existing rail noise with (b) noise due to the specific rail project under consideration plus the existing rail noise.
3. The noise levels are external levels except where otherwise stated.
4. The trigger levels apply consistently to urban, suburban and rural settings. For heavy rail they do not differentiate between freight haulage, suburban commuter networks and regional lines.
5. ‘Residential’ land use typically means any residential premises and includes aged-care facilities and caravan parks incorporating long-term residential use. Refer to section 1.4.3 regarding proposed future land use developments. Where the status of the land use is in doubt, consult the relevant planning authority.
6. Noise levels at residences are assessed one metre in front of the most affected building façade. Where only free-field measurements can be made, the measured noise level is corrected (generally by +2.5 dB(A)) to account for the façade reflection effect. In the case of multi-level residential buildings, the external point of reference for measurement for the trigger is the two floors of the building most exposed to rail noise. On other floors, an internal noise level value 10 dB(A) below the relevant external noise level value applies on the basis that windows that can be opened can do so sufficiently to provide adequate ventilation (refer to minimum ventilation requirements in the Building Code of Australia, 2010).
7. Where a redevelopment proposal is likely to exceed the existing rail noise levels as detailed in tables 1 or 3, the ‘increase’ in noise should be calculated to a single decimal place before comparing it with the 2 dB(A) and 3 dB(A) noise-increase trigger levels. However, the absolute noise levels should be calculated to the nearest whole decibel number before comparing them with the absolute trigger.
8. LA_{eq}(T) (where T is the relevant time period) refers to the equivalent continuous noise level from all train movements occurring during the assessment time period.
9. LA_{max} refers to the maximum noise level not exceeded for 95 per cent of rail pass-by events and is measured using the ‘fast’ response setting on a sound-level meter.
10. The L_{Amax} trigger levels exclude safety warning devices such as warning horns and bells at level crossings. However, horn noise should be taken into consideration in the noise assessment process (see section 3.3.2 and Appendix 6).

11. Internal noise levels refer to the noise level at the centre of the habitable room that is most exposed to the noise source and are applied with windows opened sufficiently to provide adequate ventilation. In cases where gaining internal access for monitoring is difficult, external noise levels of 10 dB(A) above the internal levels apply.

12. The noise level values for sensitive land uses, other than residential, apply for the periods when the premises are in use.

13. In assessing noise levels at passive and active open spaces as well as in hospital grounds, the noise level is assessed at the most affected point no closer than 50 metres from the area boundary.

14. For external activities associated with schools, educational institutions and places of worship, the relevant passive or active open space categories apply.

15. In the case of mixed-use development each component of use should be considered separately. For example, in a mixed-use development containing residences and a childcare facility, the residential component should be assessed against the appropriate triggers for residences in Tables 1 and 2, and the childcare component should be assessed against the triggers in Table 3.

16. Where the category of the premises is not clear, seek advice from the relevant planning authority.

17. For sensitive land uses, $L_{\text{Aeq(1h)}}$ means the highest 10th-percentile hourly A-weighted L_{Aeq} during the period when the particular class of receiver building/place is in use. Alternatively, the highest $L_{\text{Aeq(1h)}}$ value can be used where insufficient data are available to provide a valid 10th-percentile level, provided that the value is representative.

18. For both new and redeveloped heavy or light rail projects, the noise trigger levels should be evaluated at the following two points in time:

New rail project
- timeframe 1: immediately after operations commence
- timeframe 2: for a design year (typically ten years) after opening

Rail redevelopment project
- timeframe 1: immediately after operations commence
- timeframe 2: for a design year (typically ten years) after changed traffic conditions.

For each timeframe above, a comparison should be made between:
- the rail noise levels if the project proceeds (termed the ‘build option’), and
- the corresponding rail noise levels, due to general traffic growth that would have occurred if the project had not proceeded (termed the ‘no build option’).

Comparing the noise predicted at the opening of a project, timeframe 1, against the chosen trigger levels will indicate the potential for any noise issues once the project commences such as community reaction to significant changes in noise levels from a new project. Comparing future predicted noise levels, timeframe 2, against the same chosen triggers will indicate the potential for any noise impacts in the longer term, once the project is established.

19. There may be situations where it is reasonable to vary the standard time periods applied to the day and night periods. For example, there may be instances where the noise levels in an area begin to rise quickly before 7 am (the standard cut-off point between day and night) because of normal early morning activity by the general community. In these cases it is reasonable to consider varying the standard day and night-time periods to better reflect the actual temporal changes in noise for that location. Appropriate noise levels for these shoulder periods where night-time noise levels rise quickly to daytime noise levels may be negotiated on a case-by-case basis with the determining or regulatory authority (following community consultation).

Advice on applying the noise trigger levels and determining feasible and reasonable mitigation measures is provided in section 3.
2.5 Ground-borne noise trigger levels

Ground-borne noise is defined in ISO 14837 *Mechanical vibration – ground-borne noise and vibration arising from rail systems* as noise generated inside a building by ground-borne vibration generated from the pass-by of a vehicle on rail. It applies to both heavy and light rail. Ground-borne noise excludes direct airborne noise.

Ground-borne noise level values are relevant only where they are higher than the airborne noise from railways (such as in the case of an underground railway) and where the ground-borne noise levels are expected to be, or are, audible within habitable rooms.

Ground-borne noise differs from airborne noise because the actions available to reduce or avoid it are more limited. For example, airborne noise can often be reduced by actions such as closing windows, improving the acoustic insulation of the building façade or relocating noise-sensitive activities in the building to a location more remote from the noise source. These actions are likely to be relatively ineffective against ground-borne noise, because the noise is emitted by the building structure itself.

Retrospective measures to mitigate ground-borne noise generation can be more difficult and expensive than air-borne noise mitigation. This is because the ability to apply these measures can be restricted by the amount of head-room available in a tunnel or the ability of the track-bed to accommodate additional mitigation. It is therefore important to ensure that an adequate level of mitigation is applied during the design and construction of underground rail projects.

Limited research into the impacts of ground-borne noise is available, and information on practices applied overseas is also scarce. From a review of available material it appears the factors that can affect reaction to ground-borne noise include:

- the level of the noise
- how often it occurs
- whether an area is already exposed to rail noise and
- whether the area affected has a low-density of development (e.g. low-density residential) with associated low levels of ambient noise.

It appears reasonable to conclude that ground-borne noise at or below 30 dB L_{Amax} will not result in adverse reactions, even where the source of noise is new and occurs in areas with low ambient noise levels. Levels of 35–40 L_{Amax} are more typically applied and likely to be sufficient for most urban residential situations, even where there are large numbers of noisy events.

When assessing the impact of ground-borne noise the noise trigger levels in Table 4 (page 14) and the associated measurement methodology described in section 3 should be referenced. They are necessarily set to the lower end of the range of possible trigger values so that potential impacts on quieter suburban locations are addressed. In practice, higher levels of ground-borne noise than the trigger level for assessing impacts may be appropriate for urban areas where background noise levels are relatively high.
Table 4 Ground-borne noise trigger levels for heavy or light rail projects

<table>
<thead>
<tr>
<th>Sensitive land use</th>
<th>Time of day</th>
<th>Internal noise trigger levels dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development increases existing rail noise levels by 3 dB(A) or more and resulting rail noise levels exceed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>Day (7 am–10 pm)</td>
<td>40 $L_{A_{max}}$ (slow)</td>
</tr>
<tr>
<td></td>
<td>Night (10 pm–7 am)</td>
<td>35 $L_{A_{max}}$ (slow)</td>
</tr>
<tr>
<td>Schools, educational institutions, places of worship</td>
<td>When in use</td>
<td>40–45 $L_{A_{max}}$ (slow)</td>
</tr>
</tbody>
</table>

Technical notes to Table 4

1. Specified noise levels refer to noise from heavy or light rail transportation only and do not include ambient noise from other sources.
2. The noise levels represent internal noise levels and are to be assessed near to, but not at the centre of the most affected habitable room. For example, at night this may be the bedroom experiencing the highest levels of ground-borne noise, while during the day another habitable room might experience the highest levels of ground-borne noise. The triggers are relevant only where ground-borne noise levels are audible and are of a higher level than airborne noise levels from rail operations.
3. ‘Residential’ land use typically means any residential premises and includes aged-care facilities and caravan parks incorporating long-term residential use. Refer to section 1.4.3 regarding proposed future land use developments. Where there is doubt as to the status of the land use, consult the relevant planning authority.
4. $L_{A_{max}}$ refers to the maximum noise level not exceeded for 95 per cent of rail pass-by events and is measured using the ‘slow’ response setting on a sound-level meter.
5. For schools, educational institutions and places of worship, the lower value of the range is most applicable where low internal noise levels are expected, such as in areas assigned to studying, listening and praying.

2.6 Vibration trigger levels

Vibrations in buildings associated with rail network operations can cause disturbance and complaint in a similar fashion to noise. It needs to be considered at the infrastructure planning stage as it is difficult to mitigate retrospectively.

A separate vibration guideline, *Assessing vibration: a technical guideline* (DEC 2006), covers continuous, impulsive and intermittent vibration from a variety of sources. Train movements on a rail network can cause vibration of an intermittent type. The vibration guideline contains information on ‘preferred’ and ‘maximum’ vibration values for assessing human responses to vibration. Consider the relevant ‘preferred values’ to be the triggers which initiate an assessment of feasible and reasonable mitigation measures under this guideline. See section 3 for guidance in applying these trigger levels.
3 Assessment of noise and vibration impacts

An assessment of rail noise and vibration impacts may be needed as part of an environmental assessment, environmental impact assessment or review of environmental factors required under the EP&A Act, or under the provisions of the POEO Act. The following information will help prepare such evaluations.

3.1 Applying noise and vibration trigger levels and determining feasible and reasonable mitigation measures

When the noise and vibration trigger levels identified in this guideline and the associated guideline *Assessing vibration: a technical guideline* (DEC 2006) are likely to be exceeded, the noise and vibration assessment should identify feasible and reasonable mitigation. The proponent for the project must prepare this assessment.

Where the noise trigger-levels are exceeded, assess the feasible and reasonable mitigation measures that could be implemented to reduce noise down towards these levels. If it is reasonable to achieve these levels, the proponents should do so. If not, then project-specific noise levels should be identified. It is not mandatory to achieve the trigger levels but the assessment should provide justification if they cannot be met. An assessment of the acceptability of residual impacts should also be provided.

A noise mitigation measure is feasible if it can be engineered and is practical to build, given project constraints such as safety and maintenance requirements. Selecting reasonable measures from those that are feasible involves judging whether the overall noise benefits outweigh the overall adverse social, economic and environmental effects, including the cost of the abatement measure. Guidance on the interpretation of feasible and reasonable mitigation measures is provided at Appendix 5 and section 3.5 outlines possible mitigation measures.

For new lines and redevelopments, mitigation strategies should be considered in a hierarchical approach:
1. Controlling noise and vibration at the source.
2. Once the controls at the source are exhausted, controlling the transmission of noise and vibration.
3. Once source and transmission controls are exhausted, considering mitigation measures at the noise-sensitive receivers.

Figure 2 (page 17) outlines the process of using the noise and vibration trigger levels in this guideline. It also highlights the need for community involvement throughout the process.

3.2 Community consultation

The NSW rail network is geographically extensive. Large cross-sections of the community come into contact with the network as commuters, residents living along the rail corridor, and communities reliant on freight rail services. In this sense the rail network can be said to have many interactive partnerships. As with all partners, the activities of one can affect or impact on the other. The management of these impacts requires effective public involvement and
communication strategies to help everyone understand the impact of rail activities on the community. This is best approached by providing the community with:

- information about proposed rail activities that may affect it
- the opportunity, where appropriate, for input and/or involvement in developments and activities that may affect it
- a means of ongoing communication once rail activities begin (i.e. complaint and response mechanisms).

Noise-mitigation planning for rail infrastructure projects is greatly assisted by effective community consultation throughout the environmental assessment process. This includes the formal public exhibition phase which invites written submissions in line with the requirements of the EP&A Act. These processes allow the community to participate in any mitigation selection process in a transparent, equitable and consistent way. Effective community involvement is particularly needed where impact assessment finds there will still be noise impacts even after applying all feasible and reasonable mitigation measures.

It is equally important for land-use planning authorities to ensure that existing and planned rail corridor use is considered when making and/or determining land-use planning instruments. This includes rezoning proposals and residential development applications. In this regard, land-use planning authorities are required to consider the Development near rail corridors and busy roads – interim guidelines (DOP 2008), which set internal noise levels for new developments. The shared responsibilities of land developers and rail industry need to be effectively managed.
Assessment phase

For a heavy rail line proposal, determine if the project is to be assessed as a ‘new’ rail line or as a ‘redevelopment’ as these have different trigger levels. This is not required for light rail projects.

Identify the area of study (i.e. potentially affected receivers). Predict rail noise and vibration for typical and high-traffic volume uses on the affected areas. Use the relevant noise and vibration trigger levels in tables 1, 2, 3 and 4 to decide if mitigation measures are needed (i.e. is the project likely to exceed those trigger levels?).

If the trigger levels are likely to be exceeded, predict the level of noise and vibration likely to result from the project alone (and the total level of rail noise in the case of a redevelopment) as part of the environmental assessment process. Determine the feasible and reasonable mitigation measures that could be implemented to reduce noise to reach these levels.

Where the trigger levels cannot be reached by implementing feasible and reasonable mitigation measures, determine the noise and vibration levels to be applied as project goals. This should be based on the steps above as well as through discussions with the community and relevant agencies.

To determine the project-specific noise and vibration goals the following is recommended:

1. Determine the level by which the predicted noise and vibration levels for the project will exceed the triggers.
2. Complete an analysis of feasible noise and vibration mitigation measures, then prioritise these to maximise the protection of the acoustic environment.
3. Identify achievable noise and vibration levels for the project taking into account reasonable mitigation measures.
4. Consult with the affected community to review the noise and vibration levels for the project.
5. Adopt project-specific noise and vibration levels; i.e. values identified from 1 to 4 above, and assign these to the project.
6. Produce a report (e.g. a submissions report) that confirms the appropriateness of the achievable noise and vibration levels identified for the project and, where applicable, explain why trigger levels cannot reasonably be achieved.

Planning approval

Proposed noise and vibration levels and/or mitigation measures for the project are considered by approval authorities for inclusion in planning approval conditions.
3.3 Applying this guideline as part of a noise impact assessment

This section outlines the areas to be included in an assessment report of the noise and vibration impacts from a light or heavy rail project. The consideration of feasible and reasonable mitigation measures forms part of the project’s noise and vibration impact assessment. The extent of work and information required for each step will depend on the expected level of impact: the more significant the likely impact, the more detailed the assessment will need to be.

3.3.1 Shared rail corridor

The advice regarding shared rail corridors is most relevant for heavy rail operations where freight and passenger transport occurs in the same rail corridor and often on the same tracks. Some sections of heavy rail corridor have shared usages (i.e. passengers and freight) and some have shared ownership. In some cases there are dedicated freight lines, but in most cases tracks have shared usage.

Both situations add complexity to assessing the possible noise levels from the corridor and also may restrict the potential range of mitigation measures. In particular, where a large number of freight operators use different types of rolling stock, it becomes increasingly important to consider options such as control of noise at its source.

Where noise assessment needs to be carried out for a rail project in a shared rail corridor, these steps should be followed:

- identify the existing levels of rail noise
- identify the contribution to existing rail noise from each of the different usages (in the case of shared usage, freight compared with passengers) or from each of the different rail infrastructure owners (in the case of multiple owners)
- predict the noise arising from the operation of the rail project
- provide information on both contributed noise levels (distinguishing between shared usage or shared ownership) and the cumulative levels of rail noise, thus allowing relative noise contributions from usage type or owner to be identified.

The process from here on is as described below for any other light or heavy rail project. However, the range of feasible and reasonable mitigation measures considered needs to be appropriate for these operations.

3.3.2 Describe the track layout, sensitive development locations and proposed operations

1. Describe the alignment of the proposed track, including gradient and heights of cuttings and fill, and other track features, such as turnouts or crossovers, that may increase or decrease noise levels. Include diagrams showing the track alignment, land uses along the proposed development, and noise measurement locations. These should be at a scale large enough to delineate individual residential blocks.

2. Estimate rail traffic speeds and operating conditions, such as locomotive throttle settings, braking locations and signalling. Horn noise as a safety warning device is excluded from the project noise calculations but qualitative information should be included in the report (see Appendix 6)

3. Identify the types of rolling stock used on track, i.e. not simply ‘freight’ and ‘passenger’.

4. Estimate rail-traffic volumes immediately after commencing operations and at a point 10 years after commencement. If traffic volumes are expected to remain steady e.g. for light rail, explain why this should be so.

5. For heavy and light rail, break this at least into the periods 7 am–10 pm and 10 pm–7 am. For heavy rail, specify the proportion of freight trains for each period. Determine the typical projected volumes over an average seven day week that does not include public holidays.
6. Provide details of assumed data for the rail infrastructure project, including rail-traffic volumes and speeds, operating conditions, percentage of freight trains by time of day and length of trains (where relevant). Incorporate details of the calculation process, including assumed noise source heights for rail vehicles.

3.3.3 Determine the appropriate noise and vibration trigger levels
1. Identify affected land uses adjacent to the proposed rail project. For tunnels, this is the land use above the tunnel.
2. Determine the appropriate airborne noise trigger levels (and if relevant, ground-borne noise and vibration trigger levels) for each section of track. An assessment of vibration or ground-borne noise may not always be required. These should be assessed only where they are likely to be an issue. Where the assessment has established certain noise and/or vibration trigger levels are not appropriate to the project, the reason should be made clear in the assessment report.

3.3.4 Establish the level of existing rail noise and vibration (if present)
1. Monitor noise in the vicinity of the proposed rail project or land-use development using the measurement procedures described in section 3.4 to determine existing rail noise levels. In cases where non-rail noise makes a major contribution to ambient noise in the area, monitoring may be supplemented by calculating the rail noise component. All noise descriptors being used in the assessment should be monitored. These may include \(L_{eq(1h)} \), \(L_{eq(15h)} \), \(L_{eq(9h)} \), \(L_{max} \), sound exposure level (SEL) and for vibration these may include instantaneous and/or rms vibration levels.
2. Provide details of noise-monitoring procedures, calculations of existing noise levels, or noise-modelling assumptions. This should include noise-measurement data from each site and rail traffic volumes and speeds, operating conditions and proportions of freight trains (where relevant). It should also include, where relevant, notes on atmospheric conditions, octaves for predicting noise, and topography and ground conditions between the noise source and the receivers. Where estimates of existing levels of rail noise are made, include information on the calculation procedure, including the assumptions used.

3.3.5 Predict the noise and vibration levels of the rail infrastructure proposal
1. Impact predictions should be conducted for the proposed commencement date and an indicative period into the future (e.g. 10 years or a similar period). These should be an estimate of projected traffic volumes that represent the expected future typical level of rail traffic usage including reasonable maximum usages and not just average use. Natural growth of rail traffic noise that may have occurred if the project had not proceeded should be included for the ‘no-build option’. See point 18 of technical notes under tables 1, 2 and 3 (pages 10–11). If mitigation measures are being proposed, the predictions should be for both the before and after mitigation periods. Some predictive models are discussed in Appendix 7.
2. The separate contribution of noise and, if relevant, vibration levels from different types of use (e.g. freight or passenger), should be estimated or calculated and reported. The total or combined noise and, if relevant, vibration levels should also be reported.
3. Clearly state all assumptions used in the prediction, and quote the expected accuracy along with the final predicted levels.
4. Calculate noise levels (including ground-borne noise and/or vibration where relevant), expressed in terms of the required descriptors, for each receiver (or representative group of receivers), assuming that no noise amelioration measures are introduced. Calculated levels should include noise from rail traffic on the new development and on any other track which may influence the total rail traffic noise level at the receiver.
5. Noise-level contributions from freight and passenger rail traffic, where relevant, should be reported separately along with the total rail noise. The increase in rail noise due to the project should also be reported.

6. Although the effect of weather on noise predictions is generally negligible for nearby rail receivers, where the predictive model has provision for specifying meteorological conditions, these should be set to zero wind speed, zero degrees Celsius per 100 metre atmospheric temperature gradient, 15°C and 70 per cent relative humidity. Similarly hard ground should be specified between rail and receiver where selection of the ground type is an option.

Where alternative modelling factors are used, justification is to be given for their selection.

3.3.6 Identify potential mitigation measures

1. Mitigation measures should be considered in a hierarchical approach as outlined in section 3.1. This ensures mitigation options likely to offer the greatest benefit to the largest number of affected receivers are considered before more localised mitigation options. Where the predicted noise and/or vibration levels exceed the trigger levels, mitigation measures should be investigated. Examples of these include:
 • using alternative track alignments
 • controlling rail traffic (e.g. limiting times or speed)
 • using track measures (e.g. special track forms, rail fasteners) and potential operational measures (e.g. rail grinding)
 • identifying the rolling stock producing the highest levels of noise or vibration and taking action to rectify this
 • restricting the type of rolling stock (e.g. based on noise-emission levels)
 • using rolling stock measures (e.g. maintain rolling stock to reduce noise emissions)
 • constructing noise barriers or bunds
 • treating the façade of residential buildings where night-time noise levels are the major concern to reduce internal noise levels in sleeping areas.

2. Provide a description of all mitigation measures proposed and the reasons these particular measures were selected. Reasons for omitting or dismissing mitigation options should also be discussed.

3. For the mitigation measures selected, recalculate noise levels taking into account their effect.

4. Provide a diagram showing noise level contours, or other methods of presenting the calculated noise level at each receiver, both with and without mitigation measures.

5. Report the noise and vibration levels the project can achieve after applying all feasible and reasonable mitigation measures. These are the project-specific levels that may be considered by an approval authority in assessing a project.

6. Where the relevant noise and vibration trigger levels will not be met at each receiver after applying all feasible and reasonable mitigation measures, quantify the residual level of noise and vibration impacts. Data should also be made available for each receiver, particularly where not all noise receivers are to receive mitigation.
7. In cases where (after the levels are calculated as set out above and mitigation measures evaluated) it is considered impractical to meet the noise trigger levels, provide an assessment demonstrating how all feasible and reasonable measures have been considered. An assessment of acceptability of residual impacts should also be provided in such cases.

3.3.7 Develop a monitoring regime

Select an adequate number of representative locations along the length of the new or modified railway at which it is appropriate to later assess compliance, and present these along with the expected noise and vibration levels in a tabulated form.

A minimum of three sites should be identified. The appropriate number would depend on the length and location of the project.

3.4 Measuring existing levels of rail noise and vibration

The existing levels of rail noise and vibration will need to be measured when an assessment of the noise and vibration levels from a rail project is carried out. All measurements undertaken as part of a rail noise assessment should be accompanied by at least the following information:

- details of the equipment used (including last date of calibration) and equipment settings
- levels of accuracy of measurements
- relevant standards
- details of the location of measurement and the positioning of equipment
- details of operations and activities being measured, including the actual monitored train speeds
- where internal levels – noise and vibration – have been determined on the basis of external measurements, the method used, the accuracy of the method and all assumptions made
- a description of the dominant and background noise and vibration sources at the site.

3.4.1 Airborne noise

Procedures for measuring rail noise levels at receivers in terms of $L_{A_{max}}$, $L_{A_{eq}}$ and third-octave band L_{max} levels are set out in AS2377: Acoustics – methods for the measurement of railbound vehicle noise (Standards Australia 2002). Note that this standard requires free-field rather than façade measurements of receptor impact. The external noise trigger levels in tables 1, 2 and 3 (pages 10–11) apply at the façade, and an appropriate adjustment will need to be applied (see technical notes to the tables on page 11).

AS2377 outlines the meteorological conditions suitable for measuring rail noise. However, note that, following periods of inclement weather, wheel-rail discontinuities promoted by wheel and track slippage may be created, potentially leading to higher noise levels than would otherwise be the case.

The principal impacts of rail noise will be experienced relatively close to the rail line, although meteorological effects (e.g. winds and temperature inversions) can promote the propagation of noise. These should be taken into account when considering receivers at distances greater than 300 m. This is typically only an issue in rural areas where there are no residents in the near-vicinity of the line.
3.4.1.1 Determining the $L_{\text{Aeq}(T)}$ of rail vehicle movements

$L_{\text{Aeq}(T)}$ over the relevant time period T (e.g. day, night) is generally determined on the basis of measurements of individual movements in terms of $L_{\text{Aeq}(i)}$ or the A-weighted sound exposure level (SEL). The use of the SEL approach is recommended as it is less prone to errors. It is important to obtain a representative SEL measurement at the location of the most-affected receiver for each type of rail pass-by event likely to occur at the section of track measured. A rail pass-by event is defined by the type of vehicle and track (e.g. Tangara on near track, coal train on far track). This would involve first determining the types of vehicles likely to use the section of track and then taking sufficient measurements of each type of rail event. A representative SEL may then be determined by logarithmically averaging the individual measurements. Other information required before $L_{\text{Aeq}(T)}$ can be determined includes the number of each type of pass-by event likely to occur at the site over time period T.

Equation using SEL

$$L_{\text{Aeq}(T)} = 10 \log_{10} \left(\sum_{i=1}^{N} \left(n_i \times 10^{\frac{\text{SEL}_i}{10}} \right) \right)$$

where:
- T is the total time in the relevant period in seconds (i.e. hours $\times 60 \times 60$)
- n_i is the number of events in each type of event (i.e. the number of Tangara, the number of coal trains etc)
- N is the number of types of events (e.g. Tangaras and coal trains would be two types of events)
- SEL$_i$ is the representative event SEL of each type of event as determined from individual measurements at the most-affected receiver, which is then summed over the different type of events occurring at the site.

3.4.1.2 Determining L_{Amax} at a site

L_{Amax} measurements are required when assessing airborne levels and are measured by using the ‘fast’ response setting on a sound-level meter.

Noise from individual trains can vary for a number of reasons, including the condition of the wheels. When L_{Amax} levels are reported under this guideline, the noise levels from rail pass-bys equivalent to the L_{Amax} levels from the 50th and 95th percentiles of rail pass-bys should be reported. In determining the 50th and 95th percentile L_{Amax} levels, sufficient sample measurements (minimum of 20) to ensure a robust statistical analysis are required. Similarly, where measurement is not feasible and predictive modelling is used, the modelling must be shown to be sufficiently rigorous to provide a reliable result.

3.4.2 Ground-borne noise

For the purposes of this guideline, ground-borne noise levels should be measured (or determined) near to – but not at the centre of – the most-affected noise-sensitive room. The L_{Amax} noise descriptor and the ‘slow’ time response setting on the sound-level meter should be used. The ‘most-affected noise-sensitive room’ means the room where the structure-borne noise is the most significant, either in overall level, frequency spectrum or the time at which it occurs.
In some situations, it may not be possible to measure the ground-borne noise levels directly with a sound level meter due to the presence of extraneous noise. In these situations, measurement of ground-borne vibration levels could provide an estimate of the ground-borne noise level. If this method is adopted, all assumptions should be stated.

Ground-borne noise from individual trains can vary for a number of reasons including the condition of the wheels. When ground-borne LAmax levels are reported under this guideline, the ground-borne noise levels from rail pass-bys equivalent to the ground-borne LAmax levels from the 50th and 95th percentiles of rail pass-bys should be reported. In determining the 50th and 95th percentile ground-borne LAmax levels, sufficient sample measurements to ensure a robust statistical analysis are required. Similarly, where measurement is not feasible and predictive modelling is used, the modelling must be shown to be sufficiently rigorous to provide a reliable result.

3.4.3 Vibration

3.5 Mitigating noise from railways

This section gives a broad overview of ways to mitigate noise from rail operations. It also provides useful guidance to developers of rail infrastructure in the early stages of planning and design.

3.5.1 Types of mitigation measures

Measures for reducing noise and vibration impacts from railway operations follow three main control strategies:

- by reducing noise and vibration at the source
- in transmission to the receiver
- at the receiver.

Consider these control strategies in a hierarchical way so that all the measures which reduce noise for a large number of receivers are exhausted before more localised mitigation measures are considered.

The scope for applying feasible and reasonable mitigation measures to existing railway corridors is generally more limited and potentially more costly than for new rail developments in greenfields, and this step is almost inevitably far more costly. Implementing effective noise-management strategies is an integral part of the planning phase for rail projects and is potentially a cost-saving approach.

3.5.1.1 Controlling noise and vibration at the source

For new rail line developments it is important that the route is carefully selected to avoid creating noise impacts. Particular attention should be paid to the proposed rail line’s location in relation to existing and planned residential areas, and the possibility of using existing topographical features to mitigate noise.

Keeping rail vehicles and tracks well maintained is important and this should be given high priority in any mitigation strategy. Other types of sources that should be given high priority are those with annoying characteristics (e.g. tonality, impulsiveness). These include wheel squeal,
brake squeal and the noise from track joints and turnouts as they generally evoke a strong community reaction. Noise mitigation that reduces these annoying characteristics would provide a benefit to the community, even where there may be no measurable changes in noise levels.

Examples of mitigation measures for noise and vibration at the source include:

• track measures — rail grinding, welding to smooth discontinuities, lubrication, use of soft rail pads, and relocation of signals or turnouts
• rolling stock measures — effective muffling of diesel locomotive exhaust noise, wheel truing, on-board wheel lubrication, use of disc brakes, dampening of wheels, use of resilient wheels, wheel vibration absorbers, low-squeal brake blocks and using rolling stock that meets noise limit requirements.

Ideally, rolling stock should comprise locomotives that operate according to best practice and, where relevant, comply with noise limits specified in licences held by NSW rail track owners. Application of best practices includes:

• scheduling noisy operations at the least-sensitive times
• selective use of certain tracks
• keeping equipment well maintained
• siting noisy operations behind structures
• employing ‘quiet’ practices when operating equipment
• running staff education programs.

As both track and rolling stock factors contribute to rolling noise, mitigation needs to address both to be effective. For example, the noise control achieved by just applying track mitigation measures is only as effective as the condition of the rolling stock that is using the track.

Reducing vibration levels and ground-borne noise can be achieved by including resilient elements in the tracks, such as rail pads or rubber mats inserted between the ballast and tunnel floor or on other types of sufficiently rigid supporting structures, such as steel bridges.

3.5.1.2 Controlling noise and vibration in transmission

This involves restricting the propagation of noise and/or vibration. Such measures include using noise barriers, installing resilient baseplates and ballast mats, and noise treatment of bridges.

Barriers should be used selectively. They are a high-cost approach and their effectiveness in controlling impacts will depend on the situation. Barriers are more effective if they are near the source or the receiver. Their effectiveness is also determined by their height, the material used (absorptive or reflective) and their density. The relationship of these design features to attenuation is well documented.

Barriers can take a number of forms, including freestanding walls, grass or earth mounds or bunds, and trenches or cuttings within which noise sources are sited.

3.5.1.3 Controlling noise and vibration at the receiver

Rail lines are an essential part of our urban infrastructure. Even after putting feasible and reasonable mitigation measures in place to manage the noise at its source, sometimes complementary management at the point of impact may be required. This might be due to the closeness of affected premises or physical, operational and economic constraints. Mitigation at the receiver is included among feasible and reasonable mitigation measures. Where new residential development is planned to occur around a rail line, appropriate building design, layout and construction techniques should be applied. This is to minimise noise intrusion and ensure sleeping areas are suitably shielded from high levels of noise. Land-use planning authorities are required to consider the Development near rail corridors and busy roads – interim guideline (DOP 2008) which sets mandatory internal noise levels for bedrooms and other ‘habitable’ rooms for new residential developments along rail lines.
Where a proposed rail development will affect an existing or approved development, acoustic treatment of buildings (e.g. insulation, window-glazing for noise reduction, upgrading construction) can be considered as an option to mitigate noise. For this to be effective, an appropriate ventilation system, such as air conditioning (one that does not compromise the effect of noise insulation), often needs to be incorporated into the design. The Development near rail corridors and busy roads – interim guideline provides guidance on mitigation measures that could be a useful point of reference for retrospective mitigation.
Appendix 1 Rail noise initiatives

This guideline is one component of a wider strategy to address rail noise in NSW. The other elements include:

- A noise abatement program to address existing acute levels of noise from the rail system on a priority basis. When implemented, this program will specify agreed methods for assessing and prioritising requests for mitigation from sensitive receivers.

- An environmental planning guideline – the State environment planning policy (Infrastructure) 2007 for new residential and noise-sensitive developments alongside rail lines requires noise and vibration mitigation measures to be considered to meet mandatory internal noise levels. The SEPP specifies internal noise levels of 35 dB(A) for bedrooms during night-time and 40 dB(A) for other habitable rooms. Development near rail corridors and busy roads (DOP 2008) provides advice to developers on how to achieve these levels.

- Rolling stock noise-emission standards which are being developed at a national level by the peak industry body, the Australasian Railway Association (ARA). OEH is actively supporting this process and has promoted the need for national standards to ensure the ongoing viability of the expanding rail network.
Appendix 2 Environmental assessment requirements for rail traffic-generating developments

Land-use developments other than rail projects that are likely to generate additional rail traffic should be assessed against the following requirements:

- Identify the typical offset distance/s of sensitive receivers from the rail line/s that are likely to be affected by increased rail movements.
- Quantify the existing level of rail noise at the offset distance/s identified above using the noise descriptors $L_{Aeq,15\text{hr}}$ and $L_{A\text{max}}$ (95th percentile) dB(A).
- Predict the cumulative rail noise level (i.e. from the existing and proposed rail movements) using a calibrated noise model (based on predicted increased rail movements) at the offset distances identified above.
- Compare the cumulative noise level with the rail noise assessment trigger levels: $L_{Aeq,15\text{hr}}$ 60 dB(A), $L_{Aeq,9\text{hr}}$ 55 dB(A), and $L_{A\text{max}}$ (95th percentile) 80 dB(A).
- Implement all feasible and reasonable noise mitigation measures where the cumulative noise level exceeds the noise assessment trigger levels and project-related noise increases are predicted. In general, where existing noise levels can be reduced through feasible and reasonable measures, the primary objective is to reduce the noise levels to meet the noise assessment trigger levels as a minimum. In all cases where the L_{Aeq} noise level increases are more than 2 dB(A), strong justification should be provided as to why it is not feasible or reasonable to reduce the increase.

Notes

1. A project-related noise increase is an increase of more than 0.5 dB over the day or night periods.
2. The geographical extent of the rail noise assessment ideally should be where project-related rail noise increases are less than 0.5 dB. This roughly equates to where project-related rail traffic represents less than 10 per cent of the total line or corridor rail traffic.
3. Guidance on the concept of ‘feasible and reasonable’ is outlined in Appendix 5.
Appendix 3 Comparison of airborne noise levels for rail operations in Australia and overseas

Criteria are generally set for new or planned developments but may also be applied to existing operations (as in Switzerland) as well as to guide when action is required to reduce noise levels (see the alarm/priority criteria used in Denmark, the Netherlands, Norway, the United Kingdom, Switzerland and Canada). The criteria for existing operations are typically set at 5 decibels above those for new or planned developments. Where alarm/priority criteria are set, these are 5–10 decibels above the criteria for existing operations; where criteria have not been set for existing situations, the alarm/priority criteria are 5–10 decibels above those set for new or planned developments.

Alarm/priority criteria shown in the table below are typically the legislated noise levels that require ameliorative action by government agencies or proponents, such as noise barriers or building treatments.

The levels used overseas are mostly legislated levels, whereas NSW noise trigger levels are non-mandatory targets that can be used to initiate an assessment of noise impacts and consideration of feasible and reasonable mitigation measures.

Table 5 Comparison of airborne rail noise criteria

<table>
<thead>
<tr>
<th>Country</th>
<th>Existing rail line or redevelopment of existing line</th>
<th>New rail line</th>
<th>Alarm/priority</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New South Wales</td>
<td>65 $L_{A_{eq}(day)}$ 60 $L_{A_{eq}(night)}$ 85 $L_{A_{max}}$</td>
<td>60 $L_{A_{eq}(day)}$ 55 $L_{A_{eq}(night)}$ 80 $L_{A_{max}}$</td>
<td>n/a</td>
<td>Triggers for assessment purposes. Light rail triggers are set at 60/50 dB$L_{A_{eq}}$ (day,night) and 80 dB$L_{A_{max}}$</td>
</tr>
<tr>
<td>Victoria</td>
<td>60 $L_{A_{eq}(24h)}$</td>
<td>55 $L_{A_{eq}(24h)}$ 80 $L_{A_{max}}$</td>
<td>n/a</td>
<td>No specified criteria. Criteria stated here were formulated specifically for the proposed Melbourne Airport rail link. No plans to make these the general criteria for rail.</td>
</tr>
<tr>
<td>South Australia</td>
<td>65 $L_{A_{eq}(day)}$ 60 $L_{A_{eq}(night)}$ 85 $L_{A_{max}}$</td>
<td>60 $L_{A_{eq}(day)}$ 55 $L_{A_{eq}(night)}$ 80 $L_{A_{max}}$</td>
<td>n/a</td>
<td>In draft guidelines for the assessment of noise from rail operations (for public consultation June 2010). Draft was under review at time of printing; check South Australia EPA website for current position.</td>
</tr>
<tr>
<td>Queensland</td>
<td>Planning levels (to be progressively achieved) 65 $L_{A_{eq}(24h)}$ 87 $L_{A_{max}}$ * Interim levels (to be achieved now) 70 $L_{A_{eq}(24h)}$ 95 $L_{A_{max}}$</td>
<td>Planning Levels 65 $L_{A_{eq}(24h)}$ 87 $L_{A_{max}}$</td>
<td>n/a</td>
<td>The Code of practice for railway noise management, 2007 (version 2) was developed by Queensland Rail to demonstrate compliance with general environmental duty under the Environment Protection Act 1994. The code has been approved for use by the State Minister for Environment under section 548 of the Act. New noise-sensitive developments proposed alongside rail corridors need to meet criteria set out in the Queensland Development Code (MP 4.4) which includes internal noise limits. *The $L_{A_{max}}$ is assessed as a single event maximum level and is defined as the arithmetic average of the highest 15 maximum levels over a given 24-hour period.</td>
</tr>
<tr>
<td>Tasmania</td>
<td>Planning levels 65 $L_{A_{eq}(24h)}$ 87 $L_{A_{max}}$ Interim levels 70 $L_{A_{eq}(24h)}$ 95 $L_{A_{max}}$</td>
<td>65 $L_{A_{eq}(24h)}$ 87 $L_{A_{max}}$</td>
<td>n/a</td>
<td>No formal criteria relating to rail. Freight services only operate in Tasmania and these use current Queensland criteria.</td>
</tr>
<tr>
<td>Western Australia</td>
<td>Major upgrades are dealt with on a case by case basis 55–60 $L_{A_{eq}(day)}$ 50–55 $L_{A_{eq}(night)}$</td>
<td>55–60 $L_{A_{eq}(day)}$ 50–55 $L_{A_{eq}(night)}$</td>
<td>n/a</td>
<td>Under WA State Planning Policy 5.4 Sept. 2009, assessment is triggered at the lower level known as the noise target. The upper levels are noise limits above which noise—</td>
</tr>
</tbody>
</table>
Existing
Country Comments New rail
redevelopment
of existing line or
line priority

reduction measures need to be implemented.
Assessments need to assume one train per hour at night
which indirectly reduces maximum noise.
New noise-sensitive development near existing rail lines
needs to meet criteria for new rail lines.

European countries (façade limits)

<table>
<thead>
<tr>
<th>Country</th>
<th>Existing rail line or redevelopment of existing line</th>
<th>New rail line</th>
<th>Alarm/ priority</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>n/a</td>
<td>65–70 LA_{eq}(day)</td>
<td>n/a</td>
<td>Includes 5 dB bonus¹.</td>
</tr>
<tr>
<td>Denmark</td>
<td>n/a</td>
<td>63 LA_{eq}(24h)</td>
<td>68 LA_{eq}(24h)</td>
<td>Includes 5 dB bonus. At 68 dB(A) the owner must contribute 50 per cent to cost of insulation, 25 per cent at 73 dB(A) and 10 per cent at < 78 dB(A).</td>
</tr>
<tr>
<td>Finland</td>
<td>n/a</td>
<td>58 LA_{eq}(day)</td>
<td>53 LA_{eq}(night)</td>
<td>n/a</td>
</tr>
<tr>
<td>France</td>
<td>n/a</td>
<td>63 (60) LA_{eq}(day)</td>
<td>n/a</td>
<td>Bracketed values are for TGV lines.</td>
</tr>
<tr>
<td>Germany</td>
<td>Planning values for new dwellings: 58–63 LA_{eq}(day); 48–53 LA_{eq}(night)</td>
<td>67 LA_{eq}(day)</td>
<td>57 LA_{eq}(night)</td>
<td>n/a</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>n/a</td>
<td>63 LA_{eq}(day)</td>
<td>58 LA_{eq}(evening); 53 LA_{eq}(night)</td>
<td>68 LA_{eq} (at this level the state is responsible for correcting noise problem) 73 LA_{eq} absolute maximum level allowed and only provided an indoor level of 40 LA_{eq} can be met.</td>
</tr>
<tr>
<td>Norway</td>
<td>n/a</td>
<td>55–60 LA_{eq}(24h)</td>
<td>80 L_{max}</td>
<td>45–55 L_{max} (indoors)</td>
</tr>
<tr>
<td>Sweden</td>
<td>n/a</td>
<td>58 LA_{eq}(24h)</td>
<td>45 L_{max} (indoors)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

¹ Criteria for rail are generally 5 dB higher than those for road as rail is considered less annoying.
<table>
<thead>
<tr>
<th>Country</th>
<th>Existing rail line or redevelopment of existing line</th>
<th>New rail line</th>
<th>Alarm/ priority</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Switzerland | 60-65 $L_{Aeq}(\text{day})$
50-55 $L_{Aeq} (\text{night})$
‘Impact threshold’
Levels below this are considered to have no impacts. | 55-60 $L_{Aeq}(\text{day})$
45-50 $L_{Aeq} (\text{night})$
‘Planning value’
Levels for design of new developments. | 70 $L_{Aeq}(\text{day})$
65 $L_{Aeq} (\text{night})$
‘Alarm values’ levels at which assessment of remediation is required. | Levels presented are for residential classifications of which there are two – more sensitive zones are 5 dB lower than the less sensitive zones. For commercial and industrial add 5 and 10 dB, respectively. Railway bonus 5 to 15 dB depending on number of trains: the higher the number the lower the bonus. The levels quoted allow a 5 dB bonus. |
| United Kingdom | n/a | n/a | 68 $L_{Aeq}(\text{day})$
63 $L_{Aeq} (\text{night})$ | Criteria used to determine insulation requirements. | |
| North America | | | | |
| Canada | n/a | 35 $L_{Aeq}(\text{night})$
(bedroom)
40 $L_{Aeq}(\text{day})$
(living areas)
55 $L_{Aeq}(\text{day})$
(outdoor) | n/a | |
| United States | n/a | 52–65 $L_{Aeq}(1h)$
(serenity)
52–65 L_{Aeq}
(residences)
57–70 $L_{Aeq}(1h)$
(schools etc.)
(5 dB onset adjustment for high-speed maglev [magnetic levitation] operations) | n/a | Depends on existing noise levels. Criteria stated vary, as corresponding existing noise levels vary from 43–63 dB(A). Criteria represent onset of impact and also are cumulative levels (i.e. existing plus new). |
| Asia | | | | |
| Hong Kong | n/a | 60 $L_{Aeq}(30 \text{ min})$
(day and evening)
50 $L_{Aeq}(30 \text{ min})$
(night)
85 L_{Aeq}
(night) | n/a | Values given for residential areas not affected by other noise sources. For increasingly affected areas add 5 and 10 dB to the L_{Aeq} criteria. |
| Japan | n/a | 70 $L_{Aeq}(\text{residential})$
75 $L_{Aeq}(\text{commercial, industrial with residences})$ | n/a | For the Shinkansen Superexpress railway. Measured as the energy mean of the highest 10 out of 20 successive train measurements between 6 am and midnight (with meter set to slow response). |

1 Criteria for rail are generally 5 dB higher than those for road as rail is considered less annoying.
Appendix 4 Studies in reactions to noise

4.1 Noise and annoyance

Social survey research over the last 30 years in various countries has shown that reaction to noise varies widely from individual to individual. Because of this, it is not possible to adopt noise levels that will guarantee no one will experience an impact.

The trigger levels in this document (see section 2) aim to protect at least 90 per cent of the population living in the vicinity of rail lines from being highly annoyed by rail noise. This approach is consistent with that applied to road traffic noise but acknowledges that rail is generally accepted to be less annoying than road noise at the same level.

The absolute L_{Aeq} rail noise trigger levels for heavy rail in this guideline are based on social survey research and national practices. Research by Miedema and Oudshoorn (2001), illustrated in Figure 3 (below), provides the basis for considering the level of noise that creates community annoyance and informs the airborne noise trigger levels in Table 1 (page 10).

The LDN (Day−Night average sound level) shown in Figure 3 (below) measures the average noise energy over a 24-hour period and applies a 10 dB penalty to night-time noise to take account of increased annoyance at night. Figure 3 presents the percentage of people reporting high annoyance to rail noise against a range of noise levels. It shows that more than 10 per cent of people report high annoyance to noise when it exceeds approximately 67 L_{DN} (dBA).

Figure 3 Percentage highly annoyed vs L_{DN} for rail noise (Miedema & Oudshoorn 2001)

The L_{DN} descriptors used in the work of Miedema and Oudshoorn are not generally used in Australia. Figure 4 (page 32) demonstrates how these compare to the descriptors of $L_{Aeq(15h)}$ and $L_{Aeq(9h)}$ used in this guideline. The trigger values of 65 dB(A) $L_{eq(15h)}$ and 60 dB(A) $L_{eq(9h)}$ used in Table 1 (page 10) of this guideline for heavy rail redevelopments, correlate to protecting approximately 90 per cent of receivers from being highly annoyed by rail noise.
The following example demonstrates the variation in decibels for different descriptors. An $L_{Aeq(15hr)}$ 65 dB(A) and $L_{Aeq(9hr)}$ 60 dB(A) correlates with a value of 63.7 dB(A) for $L_{Aeq(24hr)}$ and a value of 67.5 dB(A) for L_{DN}.

<table>
<thead>
<tr>
<th>dB(A)</th>
<th>$L_{Aeq(15hr)}$</th>
<th>$L_{Aeq(9hr)}$</th>
<th>$L_{Aeq(24hr)}$</th>
<th>L_{DN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{Aeq(15hr)}$</td>
<td>65</td>
<td>60</td>
<td>63.7</td>
<td>67.5</td>
</tr>
</tbody>
</table>

$$L_{Aeq(24hr)} = 10\log\left(10^{6.5} \times \frac{15}{24}\right) + \left(10^{6.0} \times \frac{9}{24}\right) = 63.7\text{dB(A)}$$

$$L_{DN} = 10\log\left(10^{6.5} \times \frac{15}{24}\right) + \left(10^{7.0} \times \frac{9}{24}\right) = 67.5\text{dB(A)}$$

The L_{DN} calculation adds a 10 dB penalty to the night-time period.

4.2 Health effects of noise exposures

Several studies have shown that excessive noise from rail traffic and other transport modes can lead to sleep disturbance and other health impacts, not just annoyance. Recent research – WHO 2011, Bluhm et al 2007, Muzet 2007, Grazuleviciene et al 2004, – supports earlier findings that the shorter-term health effects of sleep disturbance due to excessive noise exposure can affect quality of life during the subsequent waking hours. Symptoms include fatigue, moodiness, irritability, headaches, stomach upsets, lack of concentration and reduced work ability. These shorter-term effects do not appear to be reduced through repeated exposure and habituation.

Longer-term effects on health are more difficult to quantify, although recently links have been confirmed between noise exposure and heart rate, immune response, hypertension, blood pressure, occurrence of ischemic heart disease, cardiovascular disease and myocardial infarction.

There is also evidence that noise has an effect on children’s learning ability (enHealth Council 2004). Children exposed to high levels of environmental noise may display sustained and visual attention deficits, difficulty concentrating, reduced auditory discrimination and speech perception, poorer memory that requires high processing demands of semantic material, and reduced reading ability and school performance on national standardised tests.

4.2.1 Sleep disturbance

A summary of the current literature concerning sleep disturbance due to noise indicates several characteristics that influence sleep disturbance. They are the number of noisy events heard distinctly above the background level, the emergence of these events and the highest noise level.

L_{Aeq}, which is the energy average level of a noise signal over a given period, accounts for the number and level of the louder events in a signal. This is due to the high amount of energy such events carry. However, the consensus is that L_{Aeq} by itself is an inadequate predictor of the potential of a varying noise to disturb sleep. The L_{Amax} descriptor addresses the maximum noise level due to individual pass-by events and provides a way to account for the potential sleep...
disturbance from such individual events. For the time being, the $L_{A_{\text{max}}}$ noise level descriptor and the number of anticipated $L_{A_{\text{max}}}$ events during the night-time period will continue to be included in rail-noise assessments.

The *Night noise guidelines for Europe* (WHO 2009) recommend a long-term target of 40 dBA, with an interim target of 55 dBA for airborne noise. Both of these are $L_{A_{\text{eq}}}$ values relating to external noise only during the night-time period. While research is making considerable advances towards building a whole picture of the relationship between noise exposures and human health, it has some way still to go before these can be translated into practical and justifiable criteria. Research will continue to be monitored.

4.2.2 Ground-borne noise and sleep disturbance

For a good night’s sleep, the World Health Organization (WHO) recommends avoiding individual noise events exceeding 45 dB $L_{A_{\text{max}}}$ indoors (measured on ‘fast’ response setting). However, WHO (Berglund, Lindvall & Schwela 1999) also notes that the effects of noise may be greater:

- in areas with low background sound levels
- for sources with combinations of noise and vibrations
- for noise sources with low-frequency components.

All of these may be present in ground-borne noise. It is also possible to conclude that the WHO level is based on airborne noise events. Hence, levels for ground-borne noise lower than 45 dB $L_{A_{\text{max}}}$ (indoors) appear desirable. This is reflected in the triggers for ground-borne noise depicted in Table 4 (page 14) of this guideline.

4.3 Responses to change in noise level

There is evidence to suggest that reaction to a newly introduced noise source is considerably higher than reaction to a source that has been present for some time. One study conducted in Japan (reported in Schultz 1979), compared the reaction to noise near a newly-opened Shinkansen (fast train) line with the reaction near a line that had been open for eight years. For the same noise level, reaction was higher near the newly opened line. The difference in reported annoyance was equivalent to a difference of approximately 8 dB in noise exposure ($L_{A_{\text{eq}}}$). The difference in reported awakenings from sleep was equivalent to a difference of 7 dB in maximum noise levels.

Data from road noise studies further support the above findings for rail. Road studies (Brown 1987, Geoplan Resource Planning 1992) have indicated that where noise exposure is suddenly and substantially increased, reaction is higher than would be predicted from studies of steady conditions. These findings add further support for designing new rail systems in greenfields that support more stringent noise levels than redevelopments in existing rail corridors.
Appendix 5 Feasible and reasonable mitigation

‘Feasible’ and ‘reasonable’ mitigation is defined as follows.

A **feasible** mitigation measure is a noise-abatement measure that can be engineered and is practical to build, given project constraints such as safety, maintenance and reliability requirements. It may also include options such as amending operational practices (e.g. changing timetable schedules) to achieve noise reduction.

Selecting **reasonable** measures from those that are feasible involves judging whether the overall noise benefits outweigh the overall adverse social, economic and environmental effects, including the cost of the abatement measure. To make such a judgement, consider the following.

- **Noise impacts:**
 - existing and future levels, and projected changes in noise levels
 - level of amenity before the project, e.g. the number of people affected or annoyed
 - any noise performance criteria for the development, e.g. internal noise levels for certain rooms
 - the amount by which the triggers are exceeded.

- **Noise mitigation benefits:**
 - the amount of noise reduction expected, including the cumulative effectiveness of proposed abatement measures – ideally, a noise wall/mound should be able to reduce noise levels by at least 5 decibels
 - the number of people protected.

- **Cost effectiveness of noise mitigation:**
 - the total cost of mitigation measures, taking into account the physical attributes of the site, e.g. topography, geology, and the cost variation to the project given the expected benefit
 - noise mitigation costs compared with total project costs, taking into account capital and maintenance costs
 - ongoing operational and maintenance cost borne by the community, e.g. running air conditioners or mechanical ventilation.

- **Community views:**
 - engage with affected land users when deciding about aesthetic and other impacts of noise abatement measures
 - determine the views of all affected land users, not just those making representations, through early community consultation
 - consider noise mitigation measures that have majority support from the affected community.

Take into account the above considerations when determining which locations should be mitigated first. In practice, the detail of the mitigation measures applied will largely depend on project-specific factors. The outcome this process aims to achieve is to balance the project’s benefits for the wider community against the costs and benefits of mitigation measures. These are the measures that minimise, as far as practicable, the local impacts of the project. Project approval conditions that flow from this process should be achievable. They need to provide clarity and confidence for the proponent, local community, regulators and the ultimate operator that the proposed mitigation measures can achieve the predicted level of environmental protection.
Appendix 6 Horn use as a safety measure

The noise triggers in this guideline are not applicable to noise from safety devices such as warning horns and bells at level crossings. This is because they are used mostly as part of safe operating procedures. However, it is recommended that the design of new and upgraded railway lines consider noise from safety devices. Aim to reduce noise levels from such devices whenever possible.

For example, this guideline recommends a noise impact assessment (NIA) consider whether a project will result in situations that may cause regular horn usage or potentially alter existing horn usage (locations, frequency of occurrence etc). If noise impacts are likely to result, this should be pointed out in the NIA. The proponent/determiner can then consider whether mitigation is feasible and reasonable. For example, flyovers could be considered instead of level crossings; operational practices, such as mandating the use of city horns (in lieu of country horns, which are louder), could be considered at locations likely to be noise sensitive where safety would not be compromised.
Appendix 7 Noise predictive models

7.1 Airborne noise predictive models

Several models are available for predicting airborne noise levels at receptors as a result of railway operations. They include the Nordic Rail Prediction Method, Schall 03 (German), OAL30 (Austrian) and Calculation of Railway Traffic Noise (CORN – United Kingdom).

All models can calculate the L_{Aeq} level. The Nordic model calculates L_{Amax} in addition to L_{Aeq} and may be advantageous to use. Each model has been essentially developed on the basis of the country of origin’s own measurement data on its rolling stock fleet. So there are differences in the propagation calculations between models. It is therefore important that the model or procedure chosen is validated for the project prior to local use.

7.2 Vibration and ground-borne noise predictive models

The prediction of vibration and ground-borne noise associated with transportation projects is a developing field, and as yet no widely accepted models are available. Procedures currently used are essentially based on a combination of measurement and the use of empirical formulae. ISO 14837 Mechanical vibration- Ground-borne and vibration arising from rail systems (ISO 2005) provides advice on developing models of ground-borne noise and vibration. Other examples of assessment procedures include the US Federal Transit Administration’s Transit noise and vibration impact assessment (FTA 2006).

It is important that any method or procedure used to predict vibration and ground-borne noise for a project is clearly described and validated before use, e.g. via test measurements and calculations, published studies, and comparison with existing data bases.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘A’ weighting</td>
<td>Method of frequency weighting the electrical signal within a noise-measuring instrument to simulate the way the human ear responds to a range of acoustic frequencies.</td>
</tr>
<tr>
<td>Crossovers</td>
<td>Two turnouts connecting two nearby and usually parallel lines.</td>
</tr>
<tr>
<td>dB</td>
<td>Abbreviation for decibel. A decibel is 20 times the logarithm (base 10) of the ratio of a given sound pressure level to a reference pressure; used as a measure of sound.</td>
</tr>
<tr>
<td>dB(A)</td>
<td>The A refers to an adjustment made to sound level measurement, by means of an electronic filter, in line with international standards. This approximates the response of the human ear at lower sound pressure levels. Most community noise is measured in A-weighted decibels.</td>
</tr>
<tr>
<td>Feasible and reasonable</td>
<td>See Appendix 5.</td>
</tr>
<tr>
<td>Ground-borne rail noise</td>
<td>Internal noise radiated by the building structure due to ground-borne vibration produced rail vehicle movements.</td>
</tr>
<tr>
<td>Habitable room</td>
<td>Any room in a residential building other than a garage, storage area, bathroom, laundry, toilet or pantry.</td>
</tr>
<tr>
<td>Heavy rail</td>
<td>Rail infrastructure and its associated rolling stock that operates in dedicated rail corridors for either passenger and/or freight transportation which may be electrified or hauled by diesel locomotives. Heavy rail generally operates at higher speeds and has a higher carrying capacity than light rail.</td>
</tr>
<tr>
<td>Infrastructure SEPP</td>
<td>State Environmental Planning Policy (Infrastructure) 2007.</td>
</tr>
<tr>
<td>L_{A10}</td>
<td>Noise level in dB(A) exceeded for 10 per cent of a specified time period. For a 1-hour period the level would be exceeded for 6 minutes but would be less for the remaining 54 minutes.</td>
</tr>
<tr>
<td>L_{A90}</td>
<td>Noise level in dB(A) exceeded for 90 per cent of a specified time period. For a 1-hour period the level would be exceeded for 54 minutes but would be less for the remaining 6 minutes. This approximates the average minimum noise level and is often referred to as the background noise level.</td>
</tr>
<tr>
<td>L_{eq} and L_{Aeq}</td>
<td>The L_{eq} represents the average noise energy during the measurement period which is equivalent to the fluctuating sound level actually occurring. When the energy level is A-weighted it may be written as L_{Aeq}. See also dB(A).</td>
</tr>
<tr>
<td>$L_{Aeq(1h)}$</td>
<td>The highest 10th percentile L_{Aeq} 1-hour measurement recorded for the relevant time period (e.g. when in use, between 7 am and 10 pm during the day).</td>
</tr>
<tr>
<td>$L_{Aeq(15h)}$</td>
<td>Logarithmic average of the L_{Aeq} noise level for between 7 am and 10 pm.</td>
</tr>
<tr>
<td>$L_{Aeq(24h)}$</td>
<td>Logarithmic average of the hourly L_{Aeq} measurements over a 24-hour period.</td>
</tr>
<tr>
<td>$L_{Aeq(9h)}$</td>
<td>Logarithmic average of the L_{Aeq} noise level for between 10 pm and 7 am.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>$L_{A\text{max}}$</td>
<td>Highest noise level in dB(A) measured during the specified time period. A time response (fast, slow or impulse) must be specified.</td>
</tr>
<tr>
<td>$L_{A\text{peak}}$</td>
<td>Absolute highest noise level in dB(A) measured during the specified time period when time response is not used.</td>
</tr>
<tr>
<td>$L_{D\text{N}}$</td>
<td>Day–night average sound level. An L_{Aeq} with a 10 dB(A) penalty for environmental noise occurring between 10 pm and 7 am to take account of increased annoyance at night.</td>
</tr>
<tr>
<td>Light rail</td>
<td>A passenger transport system that generally operates at a lower speed and capacity than traditional heavy rail, does not use locomotives to haul carriages, and may operate on shared roadways with other road vehicles.</td>
</tr>
<tr>
<td>New rail line</td>
<td>See section 1.4.1.1</td>
</tr>
<tr>
<td>Redeveloped rail line</td>
<td>See section 1.4.1.2.</td>
</tr>
<tr>
<td>Rolling stock</td>
<td>Railway vehicles, including electric trains, locomotives, carriages, wagons, track vehicles and buffet cars.</td>
</tr>
<tr>
<td>SEL</td>
<td>Sound exposure level. A parameter closely related to L_{Aeq} for assessment of events (trains, aircraft, etc.) that have similar characteristics but are of different duration. The SEL value contains the same amount of acoustic energy over a ‘normalised’ 1-second period as the actual noise event under consideration.</td>
</tr>
<tr>
<td>Turnouts</td>
<td>Assemblies of rails, switches and crossings where two tracks converge into one.</td>
</tr>
<tr>
<td>Wheel squeal</td>
<td>Mid- to high-frequency tonal squeal noise produced by the stick-slip action between the wheels and rails.</td>
</tr>
</tbody>
</table>
References and further reading

EPA SA 2010, *Draft guidelines for the assessment of noise from rail operations*, public consultation, Environment Protection Authority, South Australia.

Soundscape, *Support to health*, Sweden. See www.soundscape.nu

