State Plan target

By 2015 there is an improvement in soil condition.

Background

Soil condition is the ability of soil to deliver a range of essential services, including habitat for soil biota, nutrient cycling, water retention and primary production. Soil condition is commonly referred to as ‘soil health’ by land managers; however the term ‘soil condition’ is used in this report to ensure consistency with other targets. For this report, current condition is compared to reference or natural condition using program baseline data, existing data and expert knowledge.
Soil condition monitoring program

The principal current objective of the program is to create a baseline against which future changes in soil condition can be measured.

Soil condition has been assessed for 124 priority soil monitoring units (SMUs) across the state. An SMU is a large tract of land with a predictable pattern of soils, where changes in soil condition and land management can be observed. Up to 10 SMUs were jointly selected within each region by DECCW and catchment management authority (CMA) staff, based upon their area, importance, pressures and vulnerability.

A network of permanent monitoring sites is being established within the SMUs across the state. Fieldwork commenced in June 2007 and, state-wide, 830 sites have been sampled as of this reporting date. This report focuses on current condition and uses soil monitoring data available from 700 of those sites and laboratory data available for 500 sites. Data collection and laboratory testing is continuing. The report is a brief summary of available results. A separate technical report contains more detailed information on methods and references.

Map of the catchment

The distribution of SMUs in the Namoi region is shown in Figure 1. The SMUs collectively covered 14,500 km² or about 35 per cent of the catchment.

Assessment

Within each SMU, up to 10 representative soil monitoring sites were established. Fifty-five sites were established in the Namoi region. Where possible, sites were paired to reflect differences in land-use on similar soils.
Soil condition indicators are measured soil properties that respond to soil pressures. Indicators were assessed using a combination of field observations, field measurements and laboratory analyses. Details concerning the indicators and evaluation methods are found in the technical report.

Soil condition indicator classes are based on the degree of deterioration of soil function against a reference or ‘natural’ condition, determined from measurements in undisturbed sites, published literature and modelling.

The soil condition index is a measure of the condition of the soil compared to reference conditions. It is the average value of all relevant condition indicator classes within an SMU or region. Results of the assessment of the soil condition index for each SMU in the Namoi region are given in Table 1 and in the map in Figure 2.

To show the range of values, a pie chart is provided in Table 1 to indicate the proportion of classes. Trend in condition is not available as only baseline data at one point in time has been collected as of the date of this report. As a surrogate, an expected trend in soil condition is provided, based on the degree to which land management is within capability (see the land management state of the catchments (SOC) report). Data confidence is based on how the age, compliance with baseline protocols, replication and representativeness of the data can be used to determine current condition.
### Table 1  Soil condition of SMUs in the Namoi region

<table>
<thead>
<tr>
<th>Soil monitoring unit</th>
<th>Soil monitoring unit name</th>
<th>Soil types and monitored land use</th>
<th>Average soil condition index</th>
<th>Range of indices</th>
<th>Expected trend in soil condition</th>
<th>Lowest scoring soil condition indicators and index</th>
<th>Data sources and confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liverpool Plain Red Earths</td>
<td>1</td>
<td>Red and Brown Kandosols, Chromosols and Dermosols. Grazing.</td>
<td>3.4</td>
<td></td>
<td></td>
<td>Sheet erosion 2.0</td>
<td>K, S and B Medium</td>
</tr>
<tr>
<td>Duri Hills</td>
<td>2</td>
<td>Red Chromosols. Cropping and grazing.</td>
<td>3.6</td>
<td></td>
<td></td>
<td>Sheet erosion 2.0</td>
<td>K, S and B High</td>
</tr>
<tr>
<td>Doreen Plain</td>
<td>3</td>
<td>Brown and Grey Vertosols. Cropping.</td>
<td>3.8</td>
<td></td>
<td></td>
<td>Wind erosion 2.6</td>
<td>K and S Low</td>
</tr>
<tr>
<td>Cryon Plain</td>
<td>4</td>
<td>Crust Grey and Brown Vertosols. Cropping.</td>
<td>3.8</td>
<td></td>
<td></td>
<td>Wind erosion 1.7</td>
<td>K, S and B Medium</td>
</tr>
<tr>
<td>Liverpool Black Plains</td>
<td>5</td>
<td>Self-mulching Black Vertosols. Cropping.</td>
<td>3.6</td>
<td></td>
<td></td>
<td>Soil salinity 1.5</td>
<td>K, S and B Medium</td>
</tr>
<tr>
<td>Liverpool Black Footslopes</td>
<td>6</td>
<td>Black Vertosols. Cropping.</td>
<td>3.6</td>
<td></td>
<td></td>
<td>Sheet erosion 2.0</td>
<td>K, S and B High</td>
</tr>
<tr>
<td>Burrburgate Alluvials</td>
<td>7</td>
<td>Brown Vertosols and Brown Chromosols. Grazing and cropping.</td>
<td>4.0</td>
<td></td>
<td></td>
<td>Organic carbon 3.0</td>
<td>K and S Low</td>
</tr>
<tr>
<td>Pilliga Outwash</td>
<td>8</td>
<td>Sodosols. Woodland and grazing.</td>
<td>3.5</td>
<td></td>
<td></td>
<td>Soil structure 2.0</td>
<td>K, S and B Medium</td>
</tr>
<tr>
<td>Maules Creek Valley Floor</td>
<td>9</td>
<td>Tenosols, Chromosols and Sodosols. Grazing and cropping.</td>
<td>3.5</td>
<td></td>
<td></td>
<td>Sheet erosion 2.0</td>
<td>K and S Low</td>
</tr>
<tr>
<td>Come By Chance Plain</td>
<td>10</td>
<td>Brown Chromosols and Yellow Sodosols. Grazing and cropping.</td>
<td>4.2</td>
<td></td>
<td></td>
<td>Organic carbon, Soil structure 3.0</td>
<td>K and S Low</td>
</tr>
</tbody>
</table>
Legend for Table 1

a Soil condition index:

<table>
<thead>
<tr>
<th>Index</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 – 5.0</td>
<td>Very good</td>
<td>No loss of soil function. Either no deterioration or an improvement on reference condition</td>
</tr>
<tr>
<td>3.6 – 4.5</td>
<td>Good</td>
<td>Slight loss of soil function. Noticeable but not significant deterioration against reference condition</td>
</tr>
<tr>
<td>2.6 – 3.5</td>
<td>Fair</td>
<td>Noticeable loss of soil function. Noticeable deterioration against reference condition</td>
</tr>
<tr>
<td>1.6 – 2.5</td>
<td>Poor</td>
<td>Significant loss of soil function. Considerable deterioration against reference condition</td>
</tr>
<tr>
<td>&lt;1.5</td>
<td>Very poor</td>
<td>Profound loss of soil function. Severe deterioration against reference condition</td>
</tr>
</tbody>
</table>

b Range of indices: pie chart shows variation in soil condition indices for the different indicators in each SMU

c Expected trend in soil condition, based on degree to which land is managed within its capability:

↑ Soil condition is improving
↔ Soil condition shows no change
↓ Soil condition is declining

d Lowest scoring soil condition indicators and index: gives the indicator(s) of most concern in the SMU, with the associated index

e Data source:

B Baseline data for soil condition – from field and laboratory measurements
S New South Wales Soil and Land Information System (SALIS)
K Expert knowledge, publications, maps and reports
M Modelled data

f Data confidence:

High Derived from representative sites in the baseline study, compared with data from SALIS and evaluated using expert knowledge
Medium Derived from incomplete baseline and/or SALIS and has been evaluated using expert knowledge
Low Derived from modelling or expert knowledge
Table 2 shows soil condition, by indicator for all SMUs in the Namoi region. A pie chart is provided to show the proportion and range of classes. As for Table 1, expected trend is based on the degree to which land management is within capability (see land management SOC report). Data confidence is based on how the age, compliance with baseline protocols, replication and representativeness of the data can be used to determine each indicator.
Table 2  Soil condition indicators in the Namoi region

<table>
<thead>
<tr>
<th>Soil condition by indicator</th>
<th>Soil condition indicator index&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Range of indices&lt;sup&gt;b&lt;/sup&gt;</th>
<th>Expected trend in soil condition&lt;sup&gt;c&lt;/sup&gt;</th>
<th>SMUs with poor or very poor condition&lt;sup&gt;d&lt;/sup&gt;</th>
<th>Data sources and confidence&lt;sup&gt;e&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion - sheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K, M and B Medium</td>
</tr>
<tr>
<td>Water erosion, predominantly rain splash and non-concentrated flows. Erodes topsoil and reduces terrestrial and aquatic ecosystem function and productivity.</td>
<td>3.2</td>
<td>-</td>
<td>1, 2, 6, 9</td>
<td>-</td>
<td>K, M and B Medium</td>
</tr>
<tr>
<td>Erosion - gully</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K and B High</td>
</tr>
<tr>
<td>Water erosion of topsoil and subsoil by concentrated overland flows. Reduces land management options and reduces terrestrial and aquatic ecosystem function and productivity.</td>
<td>4.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>K and B High</td>
</tr>
<tr>
<td>Erosion - wind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K, M and B Medium</td>
</tr>
<tr>
<td>Wind erosion of topsoil and subsoil by the actions of wind. Reduces land management options and reduces terrestrial and aquatic ecosystem function and productivity.</td>
<td>3.8</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>K, M and B Medium</td>
</tr>
<tr>
<td>Acidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K, S and B Low</td>
</tr>
<tr>
<td>Soil pH is a major indicator of soil chemical health. Declines without adaptive management practices such as addition of sufficient lime. Associated with erosion, structure and carbon decline.</td>
<td>4.3</td>
<td>↑</td>
<td>-</td>
<td>-</td>
<td>K, S and B Low</td>
</tr>
<tr>
<td>Organic carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K, S and B Low</td>
</tr>
<tr>
<td>Prime biological determinant of soil health. Sensitive to land management practices including those that sequester carbon by plants from the atmosphere.</td>
<td>3.2</td>
<td>↓</td>
<td>-</td>
<td>-</td>
<td>K, S and B Low</td>
</tr>
<tr>
<td>Soil structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K, S and B Medium</td>
</tr>
<tr>
<td>Architectural arrangement of soil particles and voids. Governs soil water and gas exchange. Prime determinant of soil physical health.</td>
<td>3.1</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>K, S and B Medium</td>
</tr>
<tr>
<td>Soil salinity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K and B Low</td>
</tr>
<tr>
<td>Build up of salt in the soil or on the ground surface. Potential to cause profound terrestrial and aquatic ecosystem damage including massive erosion.</td>
<td>3.5</td>
<td>↔</td>
<td>5</td>
<td>-</td>
<td>K and B Low</td>
</tr>
<tr>
<td>Soil condition index for Namoi region</td>
<td>3.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>State soil condition index</td>
<td>3.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend for Table 2

a Soil condition indexes are scored using the same methods as Table 1

b Range of indices: pie chart shows variation in indices for the different SMUs for each indicator

c Expected trend in soil condition, based on degree to which land is managed within its capability:

↑  Soil condition is improving

↔  Soil condition shows no change

↓  Soil condition is declining

d SMUs with poor or very poor condition: gives the SMU numbers (see Figure 1) for which the indicator in question is rated poor or very poor (<=2.5)

e Data source and confidence: see legend for Table 1
Pressures
Land management practices are the primary pressure on soil condition and are dealt with in the SOC report on land management within capability.

Management activity
The management activity for the soil condition theme and the land management within capability theme is very similar, as both centre on promoting the adoption of sustainable land management practices by landholders.

Increasing the area of land being managed within its capability is one of NSW’s natural resource management (NRM) targets as outlined in the NSW State Plan.

Addressing the target within the Namoi region involves initiatives and programs at the state and regional levels that will ultimately bring about the adoption of best land capability-sensitive management practices by landholders.

State level
The NSW Government guides NRM through various legislation, policies, strategies and programs.

Legislation
The Catchment Management Authorities Act 2003 established the 13 CMAs and continues to outline their broad responsibility for NRM in their regions. The Soil Conservation Act 1938 provides for the conservation of soil resources; however, its role in effective soil management has diminished over time. Various other Acts provide direct and indirect mechanisms for soil protection and management, including the Protection of the Environment Operations Act 1997, Environmental Planning and Assessment Act 1979, Native Vegetation Act 2003 and the Crown Lands Act 1989.

Policies and strategies
The State Soils Policy (1987) outlines important principles for the protection and management of NSW soils. It was recently reviewed and is undergoing public consultation. Other significant state policies and strategies include:

- Total Catchment Management Policy (1987) – aims to ensure the coordinated use and management of land, water, vegetation and other natural resources on a catchment basis
- Sustainable Agriculture Policy (1998) – aims to facilitate a change in agricultural production in NSW towards ecologically and economically sustainable practices and farming systems
- NSW State Salinity Strategy (2000) – aims to slow down the increase in salinity and lay the foundations for future salinity management
- State Environmental Planning Policy (SEPP) Rural Lands (2008) – aims to facilitate the orderly and economic use and development of rural lands for rural and related purposes.

Programs
A number of relevant programs operate at the state level:
• Monitoring, evaluation and reporting (MER) program – DECCW is responsible for continuing its MER program and completing a baseline across all CMAs relating to soil condition and land management. The Australian Department of Agriculture, Fisheries and Forestry is funding a pilot program for national monitoring of water and wind erosion, soil acidification and soil carbon. The SoilWatch soil condition performance monitoring kit is being developed to complement and supplement MER surveillance monitoring throughout the state.

• Soil and land-use mapping – much of eastern and central NSW is covered by soil landscape mapping at 1:100,000 or 1:250,000; this is primarily undertaken by DECCW. Reconnaissance scale soil or land system mapping covers other areas. DECCW is anticipating the publication of the Soil Landscape of the Liverpool Plains portion of the Baan Baa 1:100,000 sheet in the near future. A program of detailed land-use mapping across the state is nearing completion.

• Assessment systems – a number of soil and land assessment systems have recently been developed which will ultimately lead to more sustainable land management. These systems, which have primarily been developed by DECCW, include:
  – a system to assess the impact of various land management actions on soil condition
  – a land and soil capability (LSC) assessment system, with draft mapping completed across NSW
  – a soil and landscape constraint assessment system
  – the Tools2 (SLICK) modelling system, which allows for assessment of the impact on soils from different management options.

• Information exchange and advice – soil and landscape information and land management advice is provided through various publications, maps and databases (see www.environment.nsw.gov.au/soils/index.htm). The NSW Soil and Land Information System (SALIS) is run by DECCW and is intended as the single soil database for soil information in NSW. The Natural Resource Atlas (www.nratlas.nsw.gov.au) is used to access publicly available soil profile information. The NSW Land Management Database is being developed and distributed to CMAs throughout the state. Extension services that encourage sustainable land management practices by landholders are undertaken widely by Industry & Investment NSW (I&I) staff throughout the state.

• Research – research programs aimed at improving soil condition, productivity and sustainable land management practices are carried out by various national and state institutions, including Commonwealth Scientific and Industrial Research Organisation, universities, I&I, DECCW, rural industry bodies (eg Grains Research Development Corporation).

Regional level

The Namoi Catchment Action Plan (CAP) is the key document that coordinates and drives the effort to improve natural resources across the region. The CAP describes the whole-of-Government approach to soil condition and sustainable land management and sets the direction for investment in NRM over the next 10 years. The Namoi CAP can be found at www.namoi.cma.nsw.gov.au/52.html?5.

The CAP includes specific targets, with specific areas (hectares), that will address the broader state targets. These targets are achieved through the following:

Data collection

This involves the development of a baseline of soil information and the collection of land management data over individual properties.
The Namoi CMA recently paid for reconnaissance scale-soil landscape mapping over parts of the region not already covered by DECCW mapping. All soil data for the region is being incorporated into a single database.

Planning
Priority issues are identified, as well as locations for improved land management and associated investment.

Collaboration
Partnerships are formed with farming organisations, industry groups, relevant government agencies (particularly DECCW, I&I, the Land and Property Management Authority), tertiary institutions, Landcare and similar community groups and individuals.

Awareness and skills raising
Training days and workshops have been held and guidelines and information sheets have been produced, e.g., best management practice guidelines for cropping and irrigation landscapes and Land Management Units.

Contracts and programs with landholders
Contracts have been developed with landholders to modify and improve land management practices.

Incentive programs, aimed at improving land management practices, have also been implemented. Works undertaken include soil erosion rehabilitation works, salinity control works, saline land rehabilitation and promotion of perennial pastures.

Property management plans (PMPs) are being developed with landholders, such as the Quirindi Creek PMP program.

Continued monitoring and evaluation
Monitoring programs to assess progress towards the targets will continue under CMA and DECCW programs.

Further details and examples of many of these activities are reported in recent annual reports of the CMA.

Other regional or local based bodies and programs that aid in improved land management include:

- local councils, through their compliance with the Local Government Act 1993 and local or regional planning instruments such as local environmental plans and regional environmental plans
- Landcare groups that facilitate improved landholder knowledge and on-ground works
- universities that undertake research programs in the region
- Landscan (I&I)
- Healthy Soils Healthy Landscapes program (recently completed) for improving farming (I&I)
- Liverpool Plains Land Management Council soil health and zero-till adoption program.
Further reading
