

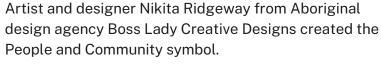
Air quality monitoring program in Cadia area: December 2024 to June 2025

Report to the NSW Environment Protection Authority, Cadia Area Air Quality Monitoring Study

Department of Climate Change, Energy, the Environment and Water

Acknowledgement of Country

Department of Climate Change, Energy, the Environment and Water acknowledges the Traditional Custodians of the lands where we work and live.


We pay our respects to Elders past, present and emerging.

This resource may contain images or names of deceased persons in photographs or historical content.

© 2025 State of NSW and Department of Climate Change, Energy, the Environment and Water

With the exception of photographs, the State of NSW and Department of Climate Change, Energy, the Environment and Water (the department) are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required to reproduce photographs.

Learn more about our copyright and disclaimer at www.environment.nsw.gov.au/copyright

Cover photo: Wind erosion in the grazing lands of the north-west of New South Wales. Simone Cottrell/DCCEEW

Published by:

Environment and Heritage

Department of Climate Change,

Energy, the Environment and Water

Locked Bag 5022, Parramatta NSW 2124

Phone: +61 2 9995 5000 (switchboard)

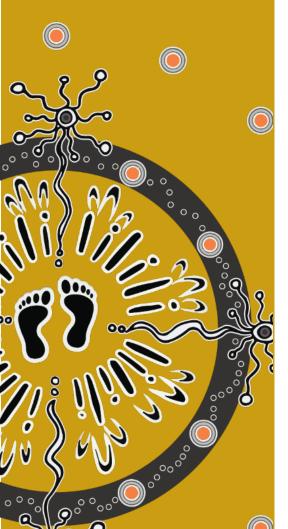
Phone: 1300 361 967 (Environment and Heritage enquiries)

TTY users: phone 133 677, then ask for 1300 361 967 Speak and listen users: phone 1300 555 727, then ask for

i

1300 361 967

Email info@environment.nsw.gov.au


Website www.environment.nsw.gov.au

ISBN 978-1-76186-029-4

EH 2025/0339 September 2025

Find out more at:

environment.nsw.gov.au

Contents

List of abbreviations	V
Background	1
Results	2
Heavy metals in TSP	2
Particulate matter	4
Climate	9
Study comparison	10
TSP levels across sites	10
Heavy metals in TSP	10
Appendix 1: Monitoring site information	12
Appendix 2: Data from full study period	13
Total suspended particles	13
Heavy metals in TSP	14
Particles	15
Appendix 3: Climate maps	16
Summer 2024–25	16
Autumn 2025	17
June 2025	18
Appendix 4: Drought maps	19
Notes	21

List of tables

Table 1	Maximum concentrations of heavy metals in TSP samples collected and December 2024 to 19 June 2025	4 3
Table 2	Summary of PM10 and PM2.5 daily averages (mean, minimum and maximum) for the period 1 December 2024 to 30 June 2025	5
Table 3	Cadia area air quality monitoring sites	12
Table 4	Range of TSP concentrations at each site during the full study	13
Table 5	Maximum heavy metals concentrations detected above the Limit of Reporting during the full study	14

List of figures

Figure I	2024 to 30 June 2025	2
Figure 2	PM10 daily averages at the 5 Cadia sites, 1 December 2024 to 30 June 2025	4
Figure 3	PM2.5 daily averages at the 5 Cadia sites, 1 December 2024 to 30 June 2025	4
Figure 4	Hourly PM10 pollution rose map for the Cadia area, 1 December 2024 to 30 June 2025	6
Figure 5	Hourly PM2.5 pollution rose map for the Cadia area, 1 December 2024 to 30 June 2025	7
Figure 6	Composite PM2.5 daily averages from available low-cost PA sensors from 1 December 2024 to 30 June 2025	8
Figure 7	Average TSP concentrations at DHVAS sites from August 2023 to June 2025	10
Figure 8	Average copper concentrations in TSP samples at each DHVAS site from August 2023 to June 2025	11
Figure 9	Average zinc concentrations in TSP samples at each DHVAS site from August 2023 to June 2025	1 11

Figure 10	Daily average PM10 at 5 sites in Cadia area from 1 August 2023 to 30 June 2025	15
Figure 11	Daily average PM2.5 at 5 sites in Cadia area from 1 August 2023 to 30 June 2025	15
Figure 12	NSW rainfall deciles – summer 2024–25	16
Figure 13	NSW maximum temperature deciles – summer 2024–25	16
Figure 14	NSW rainfall deciles – autumn 2025	17
Figure 15	NSW maximum temperature deciles – autumn 2025	17
Figure 16	NSW rainfall deciles – June 2025	18
Figure 17	NSW maximum temperature deciles – June 2025	18
Figure 18	Department of Primary Industries NSW Combined Drought Indicator 30 June 2025	to 19
Figure 19	Department of Primary Industries NSW Combined Drought Indicator 31 December 2024	to 20

List of abbreviations

Abbreviation	Definition
μg/m³	micrograms per cubic metre
AQMS	Air Quality Monitoring Station
AWS	automatic weather stations
DHVAS	Directional High Volume Air Samplers
DRX	DustTrak
HRB	hazard reduction burning
LOR	Limit of Reporting
NSW EPA	NSW Environment Protection Authority
PA	Purple Air sensors
PM10	particulate matter (diameter ≤ 2.5 micrometres)
PM2.5	particulate matter (diameter ≤ 2.5 micrometres)
TSP	total suspended particulates (TSP)

Background

The NSW Department of Climate Change, Energy, the Environment and Water (the department) is working with the NSW Environment Protection Authority (NSW EPA) to investigate possible impacts on local air quality from Newmont Corporation's Cadia East mining activity.

An initial report¹ was published in August 2024 outlining the study objective, site selection, and results from August 2023 to May 2024. A progress report² published in April 2025 presented data and analysis of air quality in the Cadia area from June to November 2024. This report provides an analysis of air quality in the Cadia area for the final monitoring period from December 2024 to June 2025.

The primary aim of the monitoring program was to assess whether Newmont Corporation's Cadia East mining operations are influencing local air quality, with a focus on heavy metals and dust.

Data was collected from 3 Air Quality Monitoring Stations (AQMS), 2 DustTrak sites (DRX), 6 Directional High Volume Air Samplers (DHVAS) and a network of 36 low-cost Purple Air (PA) sensors.

Two DHVAS were also co-located with automatic weather stations (AWS) (see Table 3 in Appendix 1). For further information on the location of these sites, please refer to the More Information section of the initial report.¹

Results

Heavy metals in TSP

There were 72 valid samples collected between 4 December 2024 and 19 June 2025 using directional high-volume air samplers (DHVAS), with sampling periods of 14 days. Figure 1 presents TSP concentrations, showing the minimum, average and maximum total suspended particulates (TSP) levels for each site. Table 1 shows maximum heavy metal concentrations measured in the TSP samples at each site.

Average TSP levels at sites to the southwest of the mine (Panuara and Panuara SW) were lower than sites to the east of the mine (Forest Reefs, Errowanbang and Tallwood). Four Mile Creek, the background site, had an average TSP concentration of 56.3 μ g/m³. As the DHVAS at Four Mile Creek sampled between 250° and 20° (west-southwest to north-northeast), the source is unlikely to be dust from the Cadia mine. Increased TSP levels at this background site were measured during April to May 2025. Overall, throughout this study TSP levels at this background site were comparable to all other sites sampling particles from the direction of the mine (Figure 7).

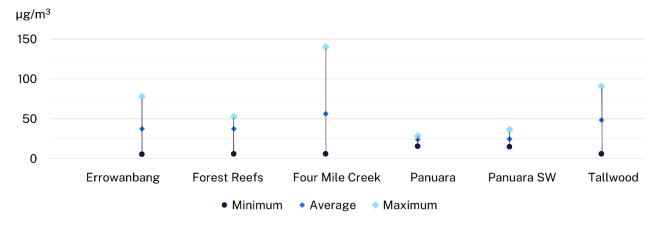


Figure 1 Range of TSP concentrations at each DHVAS site from 1 December 2024 to 30 June 2025

Heavy metal analysis of the 72 TSP samples detected copper (Cu) and zinc (Zn) at all sites (Table 1). No detectable levels were found for any of the other heavy metals. Where detected, Cu and Zn levels were very close to their Limits of Reporting. These detected levels were less than 1% of daily average guidelines of 50 μ g/m³ Cu and 120 μ g/m³ Zn used by the Queensland Government.³

Table 1 Maximum concentrations of heavy metals in TSP samples collected 4 December 2024 to 19 June 2025

Concentration µg/m³	Copper	Zinc	Lead	Selenium	Cadmium	Mercury	Molybdenum	Nickel	Arsenic
Errowanbang	0.017	0.046	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Forest Reefs	0.052	0.014	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Four Mile Creek	0.017	0.031	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Panuara	0.056	0.006	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Panuara SW	0.070	0.007	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Tallwood	0.012	0.018	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Limit of Reporting (LOR)	<0.004	<0.004	<0.007	<0.007	<0.004	<0.0003	<0.004	<0.004	<0.007
QLD guidelines³, µg/m³	50.0	120.0	2.0	NA	2.0	NA	NA	0.12	0.3

Notes:

For the full study data, refer to Table 5 in Appendix 2.

^{&#}x27;<LOR' = concentrations were below the Limit of Reporting (LOR).

^{&#}x27;NA' = no available Queensland daily average guidelines for selenium, mercury and molybdenum.

Particulate matter

Particle daily averages

Figure 2 and Figure 3 show the PM10 and PM2.5 daily averages from 1 December 2024 to 30 June 2025.

The PM10 daily average benchmark is $50 \,\mu g/m^3$. During this period, the benchmark was exceeded on one day at all 5 sites, during a widespread dust storm on 27 May 2025 that affected air quality in the majority of NSW. The PM10 daily average was highest at Forest Reefs (11 $3 \,\mu g/m^3$) followed by Bathurst AQMS (91 $\mu g/m^3$).

The PM2.5 daily average benchmark is $25 \,\mu g/m^3$. The benchmark was exceeded on 2 days, observed at 3 sites in the Cadia area. The maximum level of $35.5 \,\mu g/m^3$ occurred at Milthorpe on 14 April 2025 due to smoke from hazard reduction burning, and PM2.5 at Bathurst was also elevated on this day. On 26 June 2025, the PM2.5 daily benchmark was exceeded at Orange due to woodsmoke from domestic heating.

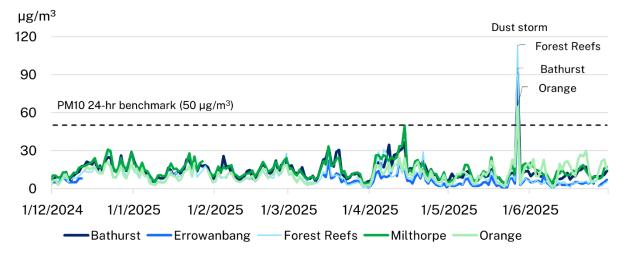


Figure 2 PM10 daily averages at the 5 Cadia sites, 1 December 2024 to 30 June 2025

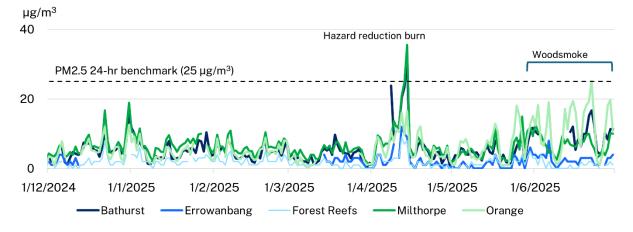


Figure 3 PM2.5 daily averages at the 5 Cadia sites, 1 December 2024 to 30 June 2025

Note: Particle data collected at Orange, Bathurst, and Millthorpe is from NATA-accredited instrumentation while data collected at Errowanbang and Forest Reefs is from indicative monitors.

The range of PM10 and PM2.5 daily averages at each site is summarised in Table 2. The mean values for this reporting period were very low compared to the respective benchmarks for PM10 (50 μ g/m³) and PM2.5 (25 μ g/m³).

Table 2 Summary of PM10 and PM2.5 daily averages (mean, minimum and maximum) for the period 1 December 2024 to 30 June 2025

Station	Particle daily averages as:	Particle daily averages as: mean (minimum–maximum)				
	PM10, μg/m ³	PM2.5, μg/m³				
Bathurst	14.1 (3.8–91.1)	5.7 (0.5–32.2)				
Orange	11.7 (1.5–64.9)	6.4 (0.3–25.1)				
Millthorpe	15.1 (4.0-64.1)	6.5 (1.0–35.5)				
Errowanbang	6.3 (1.0-63.0)	2.1 (0-12.0)				
Forest Reefs	9.5 (0-113.0)	1.7 (0-9.0)				

Hourly observations of wind and particulate matter

Between 1 December 2024 and 30 June 2025, hourly PM10 levels were occasionally elevated ('fair' or above) at all 5 Cadia area sites (Figure 4). Overall, Cadia sites recorded elevated levels for an average of 0.9% of the time (40 hours) during the 7-month period — half the state average of 2% (98 hours). The highest rates were observed at Bathurst (1.1% or 54 hours), Orange (1.1% or 50 hours), and Forest Reefs (0.9% or 43 hours). For all sites, 8–10 hours were recorded during the 27 May dust storm.

Pollution roses at Figure 4 and Figure 5 show that PM10 and PM2.5 concentrations at:

- Forest Reefs coming from the north west, north east and south west
- Millthorpe from the north, north east and south east
- Errowanbang from the east, south east and west.

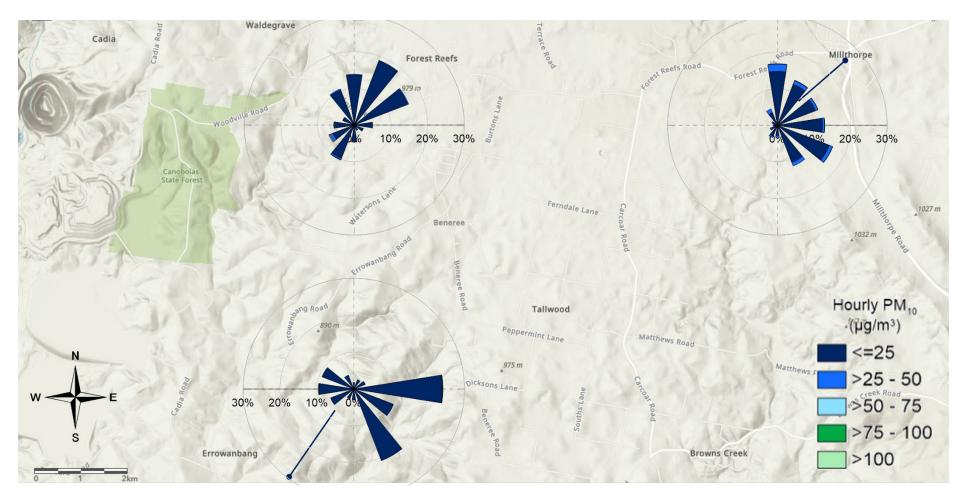


Figure 4 Hourly PM10 pollution rose map for the Cadia area, 1 December 2024 to 30 June 2025

Note: The wind sectors indicate the direction from which the wind is blowing. Hourly PM10 data was retrieved from indicative instruments at Forest Reefs and Errowanbang.

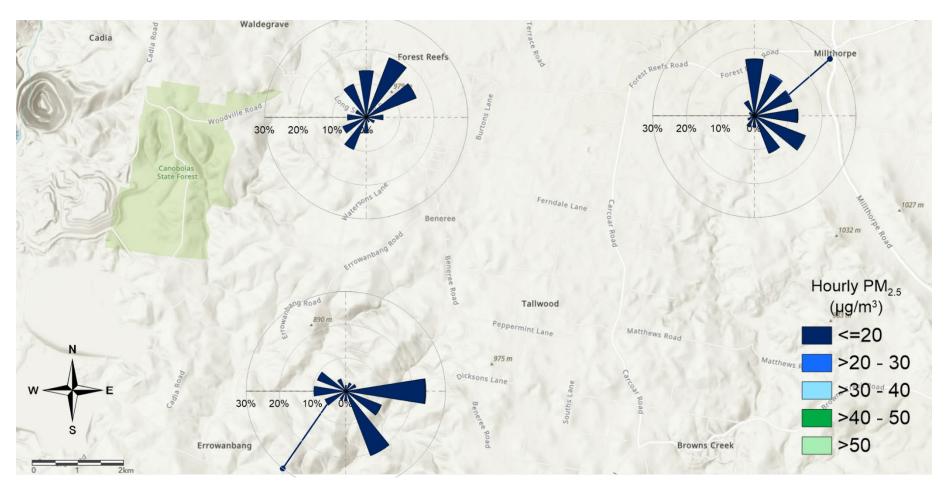


Figure 5 Hourly PM2.5 pollution rose map for the Cadia area, 1 December 2024 to 30 June 2025

Note: The wind sectors indicate the direction from which the wind is blowing. Hourly PM2.5 data was retrieved from indicative instruments at Forest Reefs and Errowanbang.

Community air monitoring

Thirty–six low–cost PA sensors were deployed across the Cadia area community to monitor PM2.5 levels. Figure 6 presents available composite PM2.5 daily averages for 1 December 2024 to 30 June 2025. The composite trend from available low-cost sensors shows that levels across the Cadia area remained below the 25 μ g/m³ threshold, with the highest PM2.5 daily average observed on 14 April 2025 when Bathurst and Millthorpe were impacted by hazard reduction burn smoke. This pattern aligned with those observed in Figure 3.

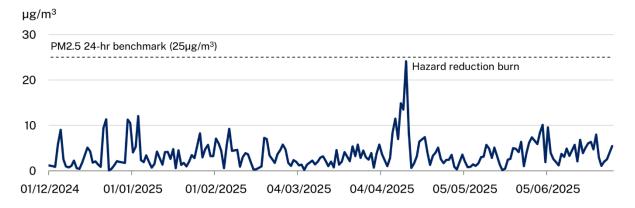


Figure 6 Composite PM2.5 daily averages from available low-cost PA sensors from 1 December 2024 to 30 June 2025

Climate

The climate in the Cadia area was variable between December 2024 and June 2025.

A drying trend developed in the area during this reporting period. Rainfall in the area was above to very much above average during summer 2024–25, and average to below average during autumn 2025 and June 2025 (see Appendix 3, Figure 12, Figure 14 and Figure 16 respectively).

Maximum temperatures in the Cadia area were consistently warmer than usual across the seasons. Maximum temperatures were above average in summer 2024–25 (Figure 13) and very much above average in autumn and June 2025 (Figure 15, Figure 17). Cadia also experienced significantly warmer-than-average minimum temperatures during summer and autumn, until a sharp drop in June brought colder nights.

As a result of the progressively less favourable rainfall totals and warmer conditions, the NSW Combined Drought Indictor shows the Cadia area transitioning from non-drought in December 2024 to intensifying drought in June 2025 (see Figure 18 and Figure 19). Such conditions would have contributed to increased dust potential across the Cadia area.

Study comparison

Appendix 2 shows particle daily averages at the 5 sites using full period of data since this monitoring program commenced in the Cadia area (August 2023 to June 2025). The main sources of particle pollution in the Cadia area were identified as:

- hazard reduction burning (HRB) 23–24 February 2024 and 14 April 2025,
- smoke from wood heating May to August (2024 and 2025)
- a dust storm on 27 May 2025, which was the only significant event recorded.

Mining operations did not significantly impact air quality in terms of either particulate matter or heavy metals. Instead, sources including domestic wood heating, HRB activities, and widespread dust events were primary contributors to elevated particle levels. Notably, elevated TSP levels found at the background site Four Mile Creek showed that site-specific influences – possibly localised dust or environmental conditions – can occasionally affect air quality, even at locations designated for background monitoring.

TSP levels across sites

Measured TSP levels compared for the full period of study (Figure 7) show that all sites had their lowest TSP levels in winter samples. This seasonal dip may reflect reduced wind speeds and increased moisture suppressing dust resuspension. Across seasons, TSP levels varied across sites, with 3 sites to the east of the mine (Errowanbang, Forest Reefs, Tallwood) recording the highest during most seasons – except for autumn due to higher levels at Four Mile Creek from autumn 2025. Over the full period, all sites exhibited average TSP levels comparable to the background site, Four Mile Creek.

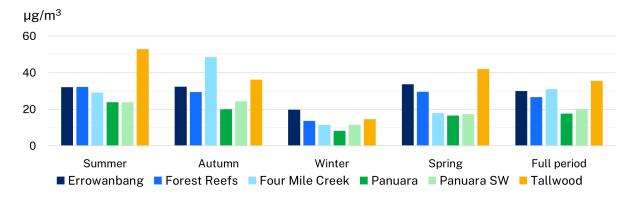


Figure 7 Average TSP concentrations at DHVAS sites from August 2023 to June 2025

Heavy metals in TSP

Heavy metal concentrations in TSP samples compared for the full period of study (Figure 8 and Figure 9) show that copper and zinc were present in trace concentrations at all sites, remaining close to the analytical limits of reporting (0.004 μ g/m³ for both) and consistently well below <1% of Queensland Government thresholds. Heavy metals

present in TSP samples showed no discernible seasonal variation, unlike TSP levels, which were lowest in winter samples.

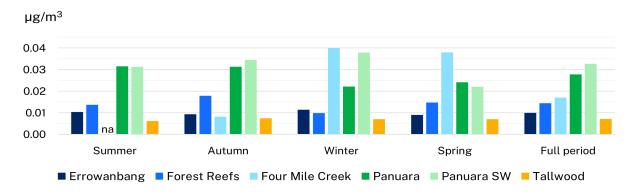


Figure 8 Average copper concentrations in TSP samples at each DHVAS site from August 2023 to June 2025

Note: na = copper concentrations in summer TSP samples at Four Mile Creek were all below the LOR.

Figure 9 Average zinc concentrations in TSP samples at each DHVAS site from August 2023 to June 2025

Appendix 1: Monitoring site information

Table 3 Cadia area air quality monitoring sites

Site	Purpose	Parameters	Established	Approximate location in relation to Cadia mine operations
Orange AQMS	Reference	Particles, gases, meteorology	January 2019	26km NNE
Bathurst AQMS	Reference	Particles, gases, meteorology	July 2000	54km E
Millthorpe AQMS	Air quality monitoring	Particles, gases, meteorology	July 2023	17km ENE
Four Mile Creek DHVAS	Background	TSP, heavy metals	February 2024	8km NW
Panuara DHVAS	Source sampling	TSP, heavy metals	February 2024	5km W
Panuara SW DHVAS	Source sampling	TSP, heavy metals	February 2024	8km SW
Tallwood DHVAS	Source sampling	TSP, heavy metals	March 2024	9km SE
Errowanbang AWS, DRX & DHVAS	Source sampling and indicative monitoring	Particles, TSP, heavy metals, meteorology	June 2023 – DRX; November 2023– DHVAS	8km SSE
Forest Reefs AWS, DRX & DHVAS	Source sampling and indicative monitoring	Particles, TSP, heavy metals, meteorology	June 2023 – DRX; November 2023 – DHVAS	6km NE

Notes: AQMS stations are compliance monitoring stations and DRX instruments use indicative monitoring. Data from DHVAS is independently tested by ALS Global.

Particles refer to PM10 and PM2.5, Gases refer to nitrogen dioxide, sulfur dioxide, carbon monoxide and ozone. Heavy metals refer to lead, selenium, cadmium, mercury, copper, molybdenum, nickel, zinc and arsenic.

Appendix 2: Data from full study period

Total suspended particles

Table 4 Range of TSP concentrations at each site during the full study

Site	Sampling period	Minimum (µg/m³)	Average (μg/m³)	Maximum (μg/m³)
Errowanbang	August 2023 to May 2024	10.6	27.6	40.0
Errowanbang	June 2024 to November 2024	4.4	24.0	64.2
Errowanbang	December 2024 to June 2025	5.5	37.4	77.9
Forest Reefs	August 2023 to May 2024	15.2	26.0	38.8
Forest Reefs	June 2024 to November 2024	3.9	15.6	37.7
Forest Reefs	December 2024 to June 2025	5.9	37.4	52.7
Four Mile Creek	August 2023 to May 2024	12.3	21.6	33.5
Four Mile Creek	June 2024 to November 2024	1.9	12.5	30.4
Four Mile Creek	December 2024 to June 2025	5.8	56.3	139.9
Panuara	August 2023 to May 2024	11.2	20.3	32.1
Panuara	June 2024 to November 2024	5.6	12.1	28.1
Panuara	December 2024 to June 2025	15.5	24.0	28.5
Panuara SW	August 2023 to May 2024	12.5	21.3	32.7
Panuara SW	June 2024 to November 2024	5.9	13.4	25.4
Panuara SW	December 2024 to June 2025	14.7	24.6	36.3
Tallwood	August 2023 to May 2024	12.3	29.4	57.1
Tallwood	June 2024 to November 2024	3.4	23.7	77.4
Tallwood	December 2024 to June 2025	5.9	48.3	90.8

Heavy metals in TSP

Table 5 Maximum heavy metals concentrations detected above the Limit of Reporting during the full study

Site	Sampling period		Nickel	Zinc
		(µg/m³)	(µg/m³)	(µg/m³)
Errowanbang	August 2023 to May 2024	0.012	-	0.047
Errowanbang	June 2024 to November 2024	0.031	-	0.017
Errowanbang	December 2024 to June 2025	0.017	-	0.046
Forest Reefs	August 2023 to May 2024	0.017	0.004	0.020
Forest Reefs	June 2024 to November 2024	0.023	_	0.026
Forest Reefs	December 2024 to June 2025	0.052	_	0.014
Four Mile Creek	August 2023 to May 2024	0.008	_	0.016
Four Mile Creek	June 2024 to November 2024	0.040	_	0.013
Four Mile Creek	December 2024 to June 2025	0.017	_	0.031
Panuara	August 2023 to May 2024	0.053	_	0.006
Panuara	June 2024 to November 2024	0.060	_	0.011
Panuara	December 2024 to June 2025	0.056	_	0.006
Panuara SW	August 2023 to May 2024	0.067	_	0.006
Panuara SW	June 2024 to November 2024	0.059	_	0.015
Panuara SW	December 2024 to June 2025	0.070	_	0.007
Tallwood	August 2023 to May 2024	0.008	0.015	0.018
Tallwood	June 2024 to November 2024	0.009	_	0.027
Tallwood	December 2024 to June 2025	0.012	_	0.018

Particles

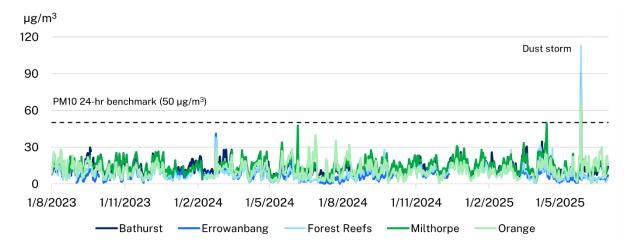


Figure 10 Daily average PM10 at 5 sites in Cadia area from 1 August 2023 to 30 June 2025

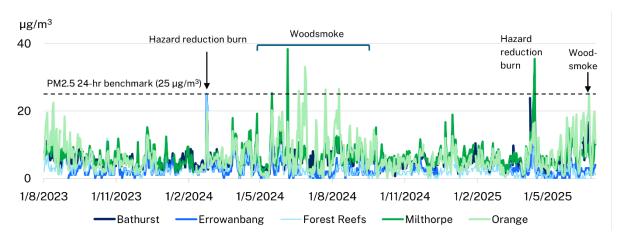


Figure 11 Daily average PM2.5 at 5 sites in Cadia area from 1 August 2023 to 30 June 2025

Appendix 3: Climate maps

Summer 2024-25

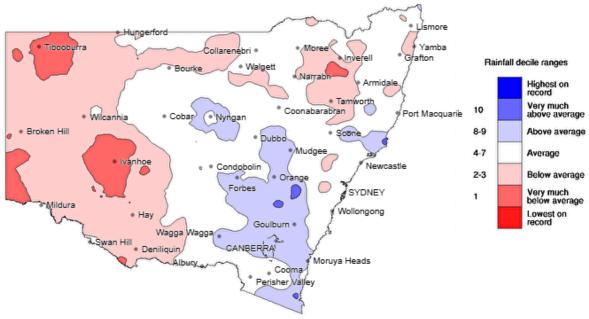


Figure 12 NSW rainfall deciles – summer 2024–25

Figure credit: ©Commonwealth of Australia 2024, Bureau of Meteorology. Base period: 1900 to February 2025. Dataset: AGCD v2. Issued 20/07/2025.

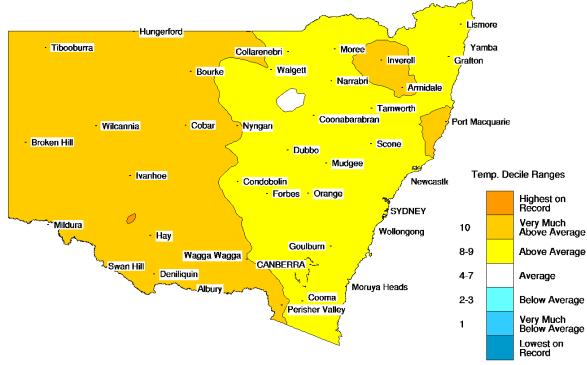


Figure 13 NSW maximum temperature deciles – summer 2024–25

Figure credit: ©Commonwealth of Australia 2024, Bureau of Meteorology. Base period: 1900 to February 2025. Dataset: AGCD v2. Issued 21/03/2025.

Autumn 2025

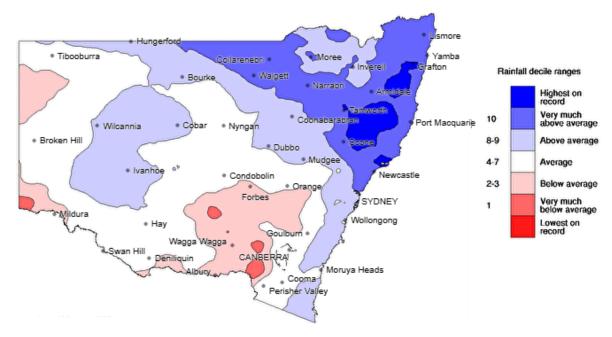


Figure 14 NSW rainfall deciles – autumn 2025

Figure credit: ©Commonwealth of Australia 2025, Bureau of Meteorology. Base period: 1900 to May 2025. Dataset: AGCD v2. Issued 20/07/2025.

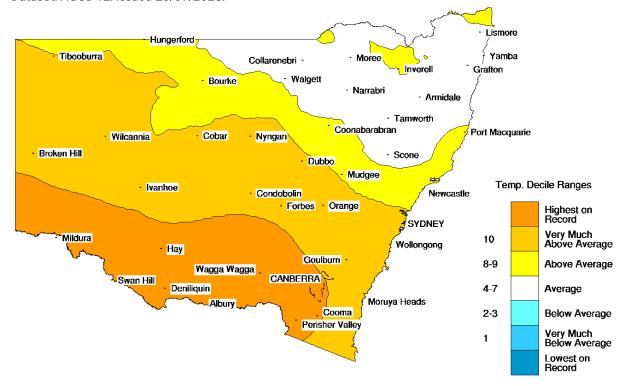


Figure 15 NSW maximum temperature deciles – autumn 2025

Figure credit: ©Commonwealth of Australia 2024, Bureau of Meteorology. Base period: 1900 to March 2025. Dataset: AGCD v2. Issued 21/06/2025.

June 2025



Figure 16 NSW rainfall deciles – June 2025

Figure credit: ©Commonwealth of Australia 2025, Bureau of Meteorology. Base period: 1900 to June 2025. Dataset: AGCD v2. Issued 21/07/2025.

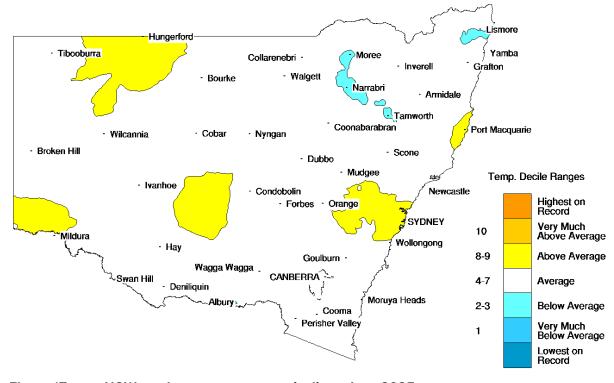


Figure 17 NSW maximum temperature deciles – June 2025

Figure credit: ©Commonwealth of Australia 2024, Bureau of Meteorology. Base period: 1900 to June 2025. Dataset: AGCD v2. Issued 21/07/2025.

Appendix 4: Drought maps

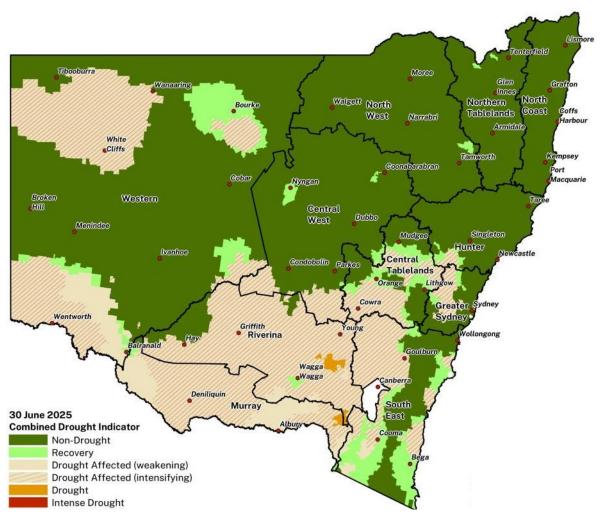


Figure 18 Department of Primary Industries NSW Combined Drought Indicator to 30 June 2025⁴

Figure produced by the NSW Department of Primary Industries © State of New South Wales EDIS v2.2.

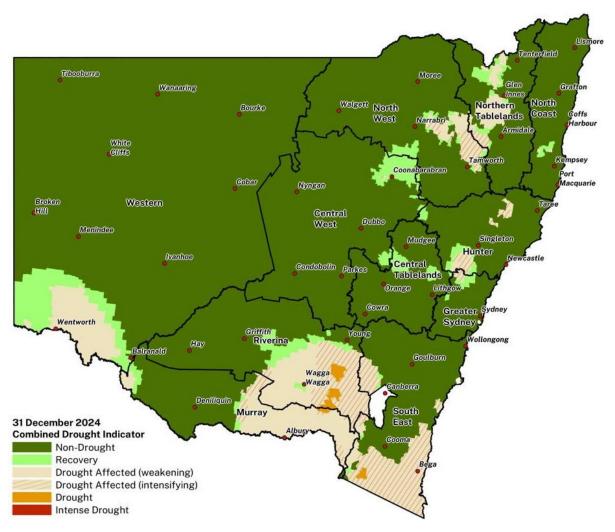


Figure 19 Department of Primary Industries NSW Combined Drought Indicator to 31 December 2024⁵

Figure produced by the NSW Department of Primary Industries © State of New South Wales EDIS v2.2.

Notes

¹ Department of Climate Change, Energy, the Environment and Water (2024) 'Air quality monitoring program in Cadia area: Initial Report',

https://www.environment.nsw.gov.au/publications/air-quality-monitoring-program-cadia-area-initial-report

- ² Department of Climate Change, Energy, the Environment and Water (2025), 'Air quality monitoring program in Cadia area: June to November 2024', https://www.environment.nsw.gov.au/publications/air-quality-monitoring-program-cadia-area-june-november-2024
- ³ Queensland Government (2025) <u>Daily average guidelines for heavy metals in ambient</u> <u>particulate matter</u>. These are the most appropriate Australian guidelines for heavy metals in ambient particulate matter. Queensland's daily averages are for non-directional sampling and are included only as a comparative tool. Queensland does not have guideline concentrations for selenium, mercury or molybdenum.
- ⁴ Sourced from Department of Primary Industries NSW State <u>seasonal update June 2025</u> (accessed August 2025).
- ⁵ Sourced from Department of Primary Industries NSW State <u>seasonal update December 2024</u> (accessed August 2025).