

DEPARTMENT OF PLANNING, INDUSTRY & ENVIRONMENT

Macquarie–Castlereagh Long Term Water Plan Part B: Macquarie– Castlereagh planning units

© 2020 State of NSW and Department of Planning, Industry and Environment

With the exception of photographs, the State of NSW and Department of Planning, Industry and Environment are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs.

The Department of Planning, Industry and Environment (DPIE) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. DPIE shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs.

All content in this publication is owned by DPIE and is protected by Crown Copyright, unless credited otherwise. It is licensed under the <u>Creative Commons Attribution 4.0 International</u> (<u>CC BY 4.0</u>), subject to the exemptions contained in the licence. The legal code for the licence is available at <u>Creative Commons</u>.

DPIE asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Department of Planning, Industry and Environment 2020.

Cover photo: Great egret in breeding plumage in flight. Photo John Spencer/DPIE

Published by:

Environment, Energy and Science Department of Planning, Industry and Environment 4 Parramatta Square, 12 Darcy Street, Parramatta NSW 2150 Phone: +61 2 9995 5000 (switchboard) Phone: 1300 361 967 (Environment, Energy and Science enquiries) TTY users: phone 133 677, then ask for 1300 361 967 Speak and listen users: phone 1300 555 727, then ask for 1300 361 967 Email: <u>info@environment.nsw.gov.au</u> Website: <u>www.environment.nsw.gov.au</u>

Report pollution and environmental incidents Environment Line: 131 555 (NSW only) or <u>info@environment.nsw.gov.au</u> See also <u>www.environment.nsw.gov.au</u>

ISBN 978-1-925974-98-0 EES 2020/0087 July 2020

Find out more about your environment at:

www.environment.nsw.gov.au

Contents

Ack	nowled	gement of Traditional Owners	iv
Abb	reviatio	ons	vii
Glos	ssary		viii
1.	Introdu	uction	1
	1.1	Planning units	1
	1.2	Methods for determining flow rate thresholds	3
	1.3	Information sources for ecological values occurring within priority	
		mental assets	4
	1.4	Selection of recommended management strategies	5
2.	Planni	ng units that are regulated or affected by regulated water	8
	2.1	Cudgegong Regulated River	8
	2.2	Regulated Macquarie River – Burrendong Dam to Baroona	13
	2.3	Regulated Macquarie River – Baroona to Warren Weir	18
	2.4	Warren Weir to Macquarie Marshes	23
	2.5	Macquarie Marshes	28
	2.6	Lower Macquarie	41
	2.7	Marra Creek	48
	2.8	Lower Bogan River	51
	2.9	Marthaguy Creek	59
3.	Unreg	ulated planning units	66
	3.1	Macquarie system – Cudgegong headwaters	66
	3.2	Macquarie system – Macquarie headwaters	71
	3.3	Macquarie system – Upper Macquarie tributaries	76
	3.4	Macquarie system – Upper Macquarie River above Burrendong	81
	3.5	Macquarie system – Bell River and Molong Creek	84
	3.6	Macquarie system – Little River	87
	3.7	Macquarie system – Wambangalong, Whylandra, Maryvale &	
	Geurie		90
	3.8	Macquarie system – Talbragar River	93
	3.9	Macquarie system – Coolbaggie Creek	96
	3.10	Macquarie system – Ewenmar Creek & Backwater Boggy Cowal	98
	3.11	Upper Bogan system – Bogan River and headwaters (above Nynga	
	3.12	Castlereagh system – Castlereagh River above Binnaway	104
	3.13	Castlereagh system – Binnaway to Gilgandra	107
	3.14	Castlereagh system – Tooraweenah to Coonamble Tributaries	109
	3.15	Castlereagh system – Castlereagh River Gilgandra to Coonamble	111
	3.16	Castlereagh system – Lower Castlereagh tributaries	113
	3.17	Castlereagh system – Castlereagh River below Coonamble	116

References

List of tables

Table 1	Key to hydrological alteration used in this document	3
Table 2	Recommended management strategies proposed for unregulated planning units	5
Table 3	LTWP EWRs for the regulated Cudgegong River as measured at Yamble Bridge (421019)	10
Table 4	LTWP EWRs for the Macquarie River between Burrendong and Baroona as measured at Dubbo (421001) (except where noted)	15
Table 5	LTWP EWRs for the Macquarie River between Baroona & Warren as measured at Warren Weir (421004)	20
Table 6	LTWP EWRs for the Macquarie River between Warren and the Macqu Marshes measured as the combined flow at the Marebone Break and Macquarie River below Marebone Weir gauges (421088 + 421090)	
Table 7	LTWP EWRs for the Macquarie Marshes PUs (southern, northern and eastern)	29
Table 8	LTWP EWRs for the Macquarie Marshes PUs (southern, northern and eastern) – Wetland inundation flows reliant on total event volume for whole-of-Marsh benefit.	33
Table 9	LTWP EWRs for the Lower Macquarie River as measured at Bells Brid (Carinda) (421012) unless otherwise specified	dge 44
Table 10	LTWP EWRs for the Lower Bogan River at Gongolgon Bridge (421023).	55
Table 11	LTWP EWRs for the Castlereagh below Coonamble at Gungalman Br (420020).	idge 119

List of figures

Figure 1	Planning units in the Macquarie–Castlereagh catchment	2
Figure 2	Map of Cudgegong Regulated River PU.	8
Figure 3	Map of Regulated Macquarie River – Burrendong Dam to Baroona PU.	13
Figure 4	Map of Regulated Macquarie River – Burrendong Dam to Baroona PU.	18
Figure 5	Map of Warren Weir to Macquarie Marshes PU.	23

Figure 6	Map of Southern Macquarie Marshes PU.	35
Figure 7	Map of Northern Macquarie Marshes PU.	37
Figure 8	Map of Eastern Macquarie Marshes PU.	39
Figure 9	Map of Lower Macquarie PU.	41
Figure 10	Map of Marra Creek PU.	48
Figure 11	Map of Lower Bogan River PU.	52
Figure 12	Map of Marthaguy Creek PU.	59
Figure 13	Map of Macquarie system – Cudgegong headwaters PU.	67
Figure 14	Map of Macquarie system – Macquarie headwaters PU.	72
Figure 15	Map of Macquarie system – Upper Macquarie Tributaries PU.	77
Figure 16	Map of Macquarie system – Upper Macquarie River above Burrendong PU.	81
Figure 17	Map of Macquarie system – Bell River and Molong Creek PU.	84
Figure 18	Map of Macquarie system – Little River PU.	87
Figure 19	Map of Macquarie system – Wambangalong, Whylandra, Maryva Geurie creeks PU.	le & 90
Figure 20	Map of Macquarie system – Talbragar River PU.	93
Figure 21	Map of Macquarie system – Coolbaggie Creek PU.	96
Figure 22	Map of Macquarie system – Ewenmar Creek & Backwater Boggy Cowal PU.	98
Figure 23	Map of Macquarie system – Bogan River and headwaters (above Nyngan) PU.	101
Figure 24	Map of Castlereagh system – Castlereagh River above Binnaway	/ PU. 104
Figure 25	Map of Castlereagh system – Binnaway to Gilgandra PU.	107
Figure 26	Map of Castlereagh system – Tooraweenah to Coonamble Tributaries PU.	109
Figure 27	Map of Castlereagh system – Castlereagh River Gilgandra to Coonamble PU.	111
Figure 28	Map of Castlereagh system – Lower Castlereagh tributaries PU.	113
Figure 29	Map of Castlereagh system – Castlereagh River below Coonamble PU.	116
/		

Acknowledgement of Traditional Owners

The NSW Department of Planning Industry and Environment pays its respect to the Traditional Owners and their Nations of the Murray-Darling Basin. The contributions of earlier generations, including the Elders, who have fought for their rights in natural resource management are valued and respected.

In relation to the Macquarie–Castlereagh Water Resource Plan Area, the NSW Department of Planning Industry and Environment pays its respects to the Traditional Owners—the Gomeroi/Kamilaroi, Ngemba, Ngiyampaa, Wailwan and Wiradjuri Nations—past, present and future. We look forward to building upon existing relationships to improve the health of our rivers, wetlands and floodplains including in recognition of their traditional and ongoing cultural and spiritual significance.

Abbreviations

AER	NSW DPIF Aquatic Ecosystems Research (database) of catch data
ARI	annual recurrence interval
Basin Plan	Murray–Darling Basin Plan
BPEOM	Basin Plan Environmental Outcome Monitoring
CAMBA	China – Australia Migratory Bird Agreement
CTF	commence-to-flow
DPI	NSW Department of Primary Industries
DPIE	NSW Department of Planning Industry and Environment
DPIE-BC	NSW Department of Planning, Industry and Environment – Biodiversity and Conservation Division
DPIE-Water	NSW Department of Planning Industry and Environment - Water
DPIF	NSW Department of Primary Industries Fisheries
EWA	environmental water allowance
EWR	environmental water requirement
ha	hectares
JAMBA	Japan – Australia Migratory Bird Agreement
LTWP	Long Term Water Plan
ML	megalitre
m/s	metres per second
NMBC	North Marsh Bypass Channel
NSW	New South Wales
OEH	NSW Office of Environment and Heritage (former government office, functions now done by DPIE-BC)
PCT	plant community type
PEW	planned environmental water
PU	planning unit
ROKAMBA	Republic of Korea – Australia Migratory Bird Agreement
UNSW	University of New South Wales
WRP	water resource plan
WRPA	water resource plan area
WSP	water sharing plan

Glossary

Alluvial	Comprised of material deposited by water.
Annual recurrence interval (ARI)	The expected frequency (in years) between exceedances of a given flow rate (in ML/d).
Bankfull flow	River flows at maximum channel capacity with little overflow to adjacent floodplains. Engages the riparian zone, anabranches and flood runners and wetlands located within the meander train. Inundates all in channel habitats including all benches, snags and backwaters.
Baseflow (BF)	Flows which inundate pools and riffle areas, providing sufficient depth for movement of small-bodied fish. Typically, baseflows are background flow levels within a river channel that are generally maintained by seepage from groundwater storage, but also by surface inflows. In watercourses with ephemeral or seasonal flows there may be extended periods without baseflows.
Basin Plan	The Basin Plan as developed by the Murray–Darling Basin Authority under the <i>Water Act 2007</i> .
Basin Plan Environmental Outcome Monitoring (BPEOM) zone	For the Basin Plan, DPIF has broken up the catchments of the Murray Darling Basin into smaller zones for the monitoring of environmental outcomes for fish. These zones are known as BPEOM zones.
Cease-to-flow (CTF)	The absence of flowing water in a river channel. Partial or total drying of the river channel. Streams contract to a series of isolated pools.
Cease-to-pump (access rule in WSP)	This is a low flow restriction on access to water for Works Approval Licences. Generally, licenced take is not permitted:
	 from in-channel pools and from natural off-river pools when the water level is lower than its full capacity
	 from pump sites when there is no visible flow.
	These rules typically apply unless there is a commence-to-pump access rule that specifies a higher flow rate that licence holders can begin pumping.
Cultural water- dependent asset	A place that has social, spiritual and cultural value based on its cultural significance to Aboriginal people and is reliant upon surface or groundwater supply for its values.
Cultural water- dependent value	An object, plant, animal, spiritual connection or use that is dependent on water and has value based on its cultural significance to Aboriginal people.
Ecological value	An object, plant or animal which has value based on ecological significance.
Ecosystem	A biological community of interacting organisms and their physical environment. It includes all the living things in that community, interacting with their non-living environment (weather, earth, sun, soil, climate and atmosphere) and with each other.
Environmental Water Allowance (EWA)	An allowance of water provided by the Water Sharing Plan for the Macquarie and Cudgegong Regulated Rivers Water Source for environmental purposes.
Environmental water	Water for meeting the requirements of water-dependent ecosystems. It provides a multitude of benefits to not only the environment, but to communities, industry and society. It includes held environmental water and planned environmental water.
Environmental water requirement (EWR)	The water required to support the completion of all elements of a lifecycle of an organism or group of organisms (taxonomic or spatial), consistent with the objective/target, measured at the most appropriate gauge. Includes all water in the system including natural inflows, held environmental water (HEW) and planned environmental water (PEW).

Flow category	The type of flow in a waterway defined by its magnitude, season, shape and role (e.g. bankfull, spring fresh for native fish breeding).
Flow regime	The pattern of flows in a waterway or wetland over time that will influence the response and persistence of plants, animals and their ecosystems.
Freshes	Temporary in-channel flow pulse that typically happens in response to rainfall or release from water storages. Very important for a range of ecological values.
Groundwater	Water that is located below the earth's surface in soil pore spaces and in the fractures of rock formations. Groundwater is recharged from, and can eventually flow to, the surface naturally.
Held environmental water (HEW)	Water available under a water access right, a water delivery right, or an irrigation right for the purposes of achieving environmental outcomes (including water that is specified in a water access right to be for environmental use).
Hydrology	The study of the distribution and movement of water. For the purposes of this Plan, it relates to the size, duration, timing and frequency of flows.
Key ecological value	A species or community that is identified for its special conservation significance based on selected temporal and spatial criteria. Examples include Murray cod or river red gum woodlands.
Large fresh (LF)	A high-magnitude flow pulse that remains in-channel. May engage flood runners with the main channel and inundate low-lying wetlands. Connects most in channel habitats and provides partial longitudinal connectivity, as some low-level weirs and other in channel barriers may be drowned out. Highly important for aquatic ecosystems.
Lateral connectivity	Hydraulic link between river channels and the adjacent floodplain, wetlands and anabranch channels.
Long Term Water Plan (LTWP)	Plans required of Basin States by the Murray–Darling Basin Plan. Long term water plans give effect to the <i>Basin-wide Environmental Watering Strategy</i> relevant for each river system and will guide the management of water over the longer term. These plans will identify the environmental assets that are dependent on water for their persistence, and match that need to the water available to be managed for or delivered to them. The plan will set objectives, targets and watering requirements for key plants, waterbirds, fish and ecosystem functions. DPIE is responsible for the development of nine plans for river catchments across NSW, with objectives for five, 10 and 20-year timeframes.
Longitudinal connectivity	The flow link along the length of a watercourse.
Overbank flow (OB)	Flows that spill over the riverbank or extend to floodplain surface flows.
Planned environmental water (PEW)	Water that is committed by the Basin Plan, a water resource plan or another plan made under State water management law to specifically achieve environmental outcomes.
Planning Unit (PU)	A geographical division of a water resource plan area based on water requirements (in catchment areas in which water is actively managed), or a sub- catchment boundary (all other areas) for the purposes of this plan.
Priority environmental asset	In the context of this plan, is a place of particular ecological significance that contains values and functions that are water-dependent and can be influenced by environmental water.
Ramsar Convention	Convention on Wetlands, called the Ramsar Convention, is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources.
Refuge (ecological)	An area which provides conditions to assist individuals within a population of plants or animals to survive through a period of decreased water availability.

Registered cultural asset	A cultural water-dependent asset that is registered in the NSW Aboriginal Heritage Information Management System (AHIMS).
Regulated river	A river that is gazetted under the NSW <i>Water Management Act 2000</i> . Flow is largely controlled by major dams, water storages and weirs. River regulation brings more reliability to water supplies but has interrupted the natural flow characteristics and regimes required by native fish and other plant and animal to breed, feed and grow.
Riparian	The part of the landscape adjoining rivers and streams that has a direct influence on the water and aquatic ecosystems within them.
Small fresh (SF)	Low-magnitude in-channel flow pulse. Unlikely to drown out any significant barriers, but can provide limited connectivity and a biological trigger for animal movement.
Surface water	Water that exists above the ground in rivers, streams creeks, lakes and reservoirs. Although separate from groundwater, they are interrelated and over extraction of either will impact on the other.
Unregulated river	A waterway where flow is mostly uncontrolled by dams, weirs or other structures.
Very-low-flow (VLF)	Minimum flow in a channel that prevents a cease-to-flow. Provides limited connectivity between some pools and maintains water level in refuge pools.
Water resource plan (WRP)	A document prepared by State authorities and accredited by the Commonwealth under the Basin Plan. The document describes how water will be managed and shared between users in an area.
Water resource plan area (WRPA)	Catchment-based divisions of the Murray–Darling Basin defined by a water resource plan.
Water sharing plan (WSP)	A plan made under the NSW <i>Water Management Act 2000</i> that sets out specific rules for sharing and trading water between the various water users and the environment in a specified water management area. A water sharing plan will be a component of a water resource plan.
Water source	Under the WSPs for the unregulated water sources of the Macquarie-Bogan Rivers and of the Castlereagh River, the catchments have been divided into smaller areas called water sources. Each of these water sources has listed access and trading rules.
Water-dependent	A term used in the Basin Plan. In the context of this plan, an ecosystem, community or species that depends on periodic or sustained inundation, waterlogging or significant inputs of surface water for part or all of its lifecycle.

Definitions and explanatory text for EWRs

•	-
Flow category	Flows in rivers vary over time in response to rainfall, river regulation, extractions and other factors. The sequence of flows over time can be considered as a series of discrete events. These events can be placed into different flow categories (e.g. baseflows, freshes, bankfull, overbank and wetland flows) according to the magnitude of flow discharge or height within a watercourse, and the types of outcomes associated with the events (e.g. inundation of specific features such as channel benches, riparian zones or the floodplain). Flow categories used in LTWPs are illustrated and defined in Figure 9 and Table 7 in Part A of each LTWP.
Environmental water requirement (EWR)	An environmental water requirement (EWR, singular) describes the characteristics of a flow event (e.g. magnitude, duration, timing, frequency, and maximum dry period) within a particular flow category (e.g. small fresh), that are required for that event to achieve a specified ecological objective or set of objectives (e.g. to support fish spawning and in-channel vegetation).
	There may be multiple EWRs defined within a flow category, and numerous EWRs across multiple flow categories within a Planning Unit (PU). Achievement of each of the EWRs will be required to achieve the full set of ecological objectives for a PU.
EWR code	Each EWR is given a specific code that abbreviates the EWR name (e.g. SF1 for small fresh 1). This code is used to link ecological objectives and EWRs.
Gauge	The flow gauging station that best represents the flow within the PU, for the purpose of the respective EWR and associated ecological objective(s). To assess the achievement of the EWR, flow recorded at this gauge should be used.
Flow rate or flow volume	The flow rate (typically ML/d) or flow volume (typically GL over a defined period of time) that is required to achieve the relevant ecological objective(s) for the EWR. Most EWRs are defined using a flow rate, whilst flow volumes are used for EWRs that represent flows into some large wetland systems.
Timing	The required timing (or season, typically expressed as a range of months within the year) for a flow event to achieve the specified ecological objective(s) of the EWR.
	In some cases, a preferred timing is provided, along with a note that the event may occur at 'anytime'. This indicates that ecological objectives <u>may</u> be achieved outside the preferred timing window, but perhaps with sub-optimal outcomes. In these instances, for the purposes of managing and delivering environmental water, the preferred timing should be used to give greater confidence in achieving ecological objectives. Natural events may occur at other times and still achieve ecological objectives.
Duration	The duration for which flows must be above the specified flow rate for the flow event to achieve the specified ecological objective(s) of the EWR. Typically this is expressed as a minimum duration. Longer durations will often be desirable and deliver better ecological outcomes.
	Some species may suffer from extended durations of inundation, and where relevant a maximum duration may also be specified.
	Flows may persist on floodplains and within wetland systems after a flow event has passed. Where relevant a second duration may also be specified, representing the duration for which water should be retained within floodplain and wetland systems.

Frequency The frequency at which the flow event should occur to achieve the ecological objective(s) associated with the EWR. Frequency is expressed as the number of years that the event should occur within a 10-year period. In most instances, more frequent events will deliver better outcomes. and maximum frequencies may also be specified, where relevant. Clustering of events over successive years can occur in response to climate patterns. Clustering can be ecologically desirable for the recovery and recruitment of native fish, vegetation and waterbirds populations, however extended dry periods between clustered events can be detrimental. Achieving ecological objectives will require a pattern of events over time that achieves both the frequency and maximum inter-flow period, and the two must be considered together when evaluating outcomes or managing systems. Where a range of frequencies is indicated (e.g. 3-5 years in 10), the range reflects factors including the natural variability in population requirements, uncertainty in the knowledge base, and variability in response during different climate sequences (e.g. maintenance of populations during dry climate sequences at the lower end of the range, and population improvement and recovery during wet climate sequences at the upper end of the range). The lower end of the frequency range (when applied over the long term) may not be sufficient to maintain populations and is unlikely to achieve any recovery or improvement targets. As such, when evaluating EWR achievement over the long-term through statistical analysis of modelled or observed flow records, the LTWP recommends using a minimum long-term average (LTA) target frequency that is at least the average of the recommended frequency range but may be higher than the average where required to achieve objectives. For example, for a recommended frequency range of 3-5 years in 10, the minimum LTA frequency should be at least 40% of years but may be up to 50% of years at sites where a higher frequency should be targeted over the long term to ensure recovery in certain species/populations. While these higher frequencies may exceed modelled natural event frequency in some cases, recovery in particularly degraded systems will be unlikely should lower (i.e. average) frequencies be targeted. Minimum LTA target frequencies in this LTWP are reported predominantly as the average of the recommended frequency range, however this may be refined during implementation of the LTWP and in future revisions of the LTWP based on the results of ongoing ecological monitoring. Maximum inter-flow or The maximum time between flow events before a significant decline in the condition, survival or viability of a particular population is likely to inter-event period occur, as relevant to the ecological objective(s) associated with the EWR. This period should not be exceeded wherever possible. Annual planning of environmental water should consider placing priority on EWRs that are approaching (or have exceeded) the maximum interevent period, for those EWRs that can be achieved or supported by the use of environmental water or management. Additional requirements Other conditions that should occur to assist ecological objectives to be and comments met - for example rates of rise and fall in flows. Also comments regarding limitations on delivering environmental flows and achieving the EWR.

1. Introduction

To manage the complexity of the Macquarie–Castlereagh Water Resource Plan Area (WRPA), the Macquarie–Castlereagh Long Term Water Plan (LTWP) has been divided into 28 planning units (PUs) (Figure 1). This document, which forms Part B of the LTWP, provides the following local-scale information for each PU.

- The location of priority environmental assets identified as part of LTWP development.
- The ecological values, including native fish and waterbird species¹, native vegetation communities and cultural water-dependant assets² that occur within the PUs priority environmental assets.
- Objectives for native fish, showing relevant species. The objectives for each planning unit are outlined in Part A of the LTWP (Appendix A). Only native fish objectives are again shown here as these are highly species specific, so the species are listed with the objectives here.
- For 'key regulated PUs', environmental water requirements (EWRs) to support key ecological values and related LTWP objectives and targets that are presented for representative gauge/s in the planning unit.
- For PUs that are 'unregulated or have significant unregulated sections', an evaluation of the impact of water resource development on local hydrology and recommended management strategies for mitigating these changes to meet LTWP objectives and targets.

1.1 Planning units

The PU boundaries typically align with water source area boundaries in the *Macquarie–Castlereagh Water Resource Plan (WRP)*. However, some of these water sources have been amalgamated or split depending on how water management for the environment can be implemented. Where there are similarities between water sources they have been amalgamated; and where there are differences they have been split. When amalgamating and splitting, we have also aligned, where possible, PUs with the boundaries of the Basin Plan Environmental Outcomes Monitoring (BPEOM) zones of the NSW Department of Primary Industries - Fisheries (DPIF).

PUs may be regulated or unregulated, however the following have some overlap in terms of their management. These are fully or partly unregulated PUs that can be influenced by regulated deliveries from upstream.

- The Macquarie Marshes PUs. Parts of these units are unregulated, but large areas of these areas can be influenced by regulated deliveries from the Macquarie River.
- The Lower Macquarie, which is unregulated. It can be influenced by deliveries from the regulated Macquarie through the Marshes.

¹ The waterbird species that are listed in each planning unit are primarily informed by spot records, which are influenced by inconsistent survey effort across the WRPA. Therefore, caution should be used in interpreting this information. Future work should focus on more rigorous monitoring or the development of models to predict species occurrence.

² The LTWP is currently limited to listing cultural assets that are registered in the Aboriginal Heritage Information Management System (AHIMS) database. It is acknowledged that Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered

- Marra Creek, which is unregulated, but receives stock and domestic replenishment flows and regulated deliveries can potentially be made at the top end (Profile gauge) from the regulated Macquarie.
- Marthaguy Creek, which is unregulated. It can be influenced downstream of the Terrigal Creek junction by deliveries from the regulated Macquarie/Marebone through the Eastern Marshes.
- The Lower Bogan PU. Parts of this PU are regulated (Gunningbar Creek, Duck Creek) and parts are unregulated. The unregulated areas can be influenced by water deliveries from the regulated Macquarie through the distributary creeks.

In regulated parts of the catchment, discretionary environmental water can be delivered to help meet the EWRs of priority environmental assets and functions. In unregulated areas, where there are no major upstream dams like Windamere or Burrendong and water cannot be delivered, the primary means of protecting environmentally important flows is through pumping access rules, restriction of trades into the water source and no creation of new entitlement.

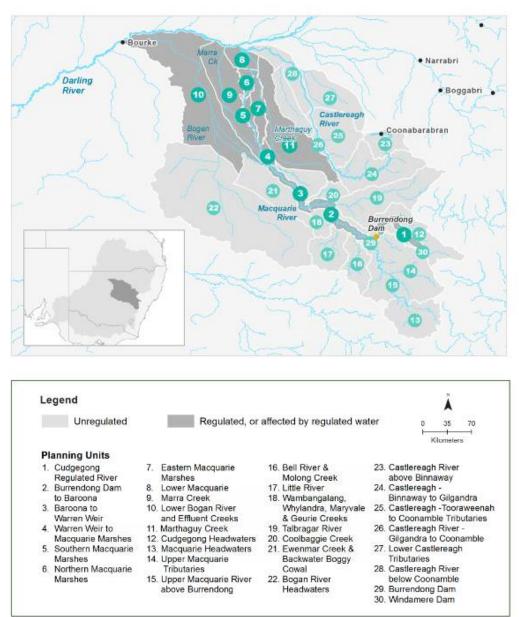


Figure 1

Planning units in the Macquarie-Castlereagh catchment

The PUs are presented in two sections in this document.

- Section 2 contains PUs 1–11, which are regulated or affected by regulated water.
- Section 3 contains PUs 12–28 that are unregulated and unable to be influenced by regulated water deliveries.

For the PUs in Section 2 that contain unregulated river reaches, the management of pumping access rules remains vital for protecting important flows. Recommended management strategies that could be implemented to ensure important flows are protected are outlined in Part A, Section 6.3 of the LTWP³.

For each PU that is unregulated or has significant unregulated sections, information is presented on the hydrology⁴ and the degree of alteration, as determined by DPIE–Water in their *Macquarie-Castlereagh Water Resource Plan Risk Assessment* (DPIE–W in prep), by comparing flows under modelled near natural conditions (with no dams or water extractions) and flows under modelled current conditions. Table 1 describes how the hydrology changes are presented for each PU.

Table 1 Key to hydrological alteration used in this document

Key from NSW DPIE–Water, in prep

L = Low: less than 20% departure (+/-) from the base case for each hydrologic metric

M = Medium: 20–50% departure (+/-); from the base case for each hydrologic metric

H = High: greater than 50% departure (+/-) from the base case for each hydrologic metric

N/A = no risk outcome or modelling available due to no hydrological data available

⁺ increase from near-natural	- decrease from near-natural	⁰ no change from near-natural
condition	condition	condition

1.2 Methods for determining flow rate thresholds

Flow rate thresholds for key regulated PUs are presented in Section 2. These thresholds were developed using multiple information sources.

- Expert opinion from regional water managers, DPIF staff and local landholders.
 - Guidelines developed by DPIF (unpublished) for flow types including:
 - Very-low-flows: ideally velocity 0.03–0.05 m/s
 - Baseflows: ideally depth >0.3 m above commence-to-flow (CTF)
 - o ∕ Small Freshes: ideally depth >0.5 m above CTF; flow 0.3–0.4 m/s
 - \sim Large Freshes: ideally depth >2 m above CTF; flow >0.3 m/s.
- Flow percentiles described in Alluvium (2010):
 - $\circ~$ the 20^{th} percentile flow 5 as an indicator of the baseflow
 - the 40th percentile flow as an indicator the 'low-flow-season fresh', which may be taken as similar to our 'small fresh'

³ To improve the specificity of rule change recommendations, improved modelling, a better understanding of the actual total amount of take and the individual water access licence conditions is often required.

⁴ The hydrology is presented as percentiles and ARIs as determined by pre-development modelling.

⁵ That is 80th percentile exceedance. Other percentiles are similarly percentiles of occurrence rather than exceedance.

- the 87th percentile flow as an indicator the 'high-flow-season fresh', which may be taken as similar to our 'large fresh'. We looked at both the 80th and 90th percentile.
- The approach used by the Stewardson and Guarino (2017) based on at-a-station hydraulic geometry equations (Stewardson 2005). They determined 'low freshes' as water levels at least one-eighth of the height of the bank above the baseflow level. They determined 'high freshes' as flow spells that raise water levels at least half of the height of the bank above the baseflow.
- Analysis of these flow rates to ensure they occurred under modelled or observed conditions. Analysis included checking against the required frequency of events and 95th percentile duration between events.

1.3 Information sources for ecological values occurring within priority environmental assets

Native fish species occurrence in PUs was determined from a range of sources including:

- the NSW Department of Primary Industries (DPI) Aquatic Ecosystem Research (AER) database (the database includes a range of site-specific catch data and information from various fish related projects in NSW from 1970 through to the present depending on the project and location)
- threatened and common species distribution models (Maxent 3.3.3)
- expert opinion from DPI Fisheries officers where applicable.

Water (flow)-dependant native vegetation communities were identified from a collated water (flow)-dependant vegetation map for the Macquarie–Castlereagh WRPA developed by DPIE as part of LTWP development. This collated map is based on best available vegetation mapping, including Plant Community Type (PCT) mapping for the Macquarie Marshes (2013) and mapping undertaken as part of the OEH Healthy Floodplains Program (2014).

Waterbird species records were collated from:

- NSW (Bionet Atlas of NSW Wildlife) and Commonwealth (Australian Living Atlas) Government databases (1977-2015)
- University of New South Wales (UNSW) aerial survey datasets (1983-2015)
- NSW OEH aerial surveys (2008-2015) and ground surveys (2012-2015).

Significant Aboriginal cultural water dependent sites that are registered in the NSW Aboriginal Heritage Information Management System (AHIMS) were also included as waterdependent assets in the LTWP and are described for each PU. This includes areas such as Aboriginal ceremony and dreaming sites, fish traps, scar trees and waterholes.

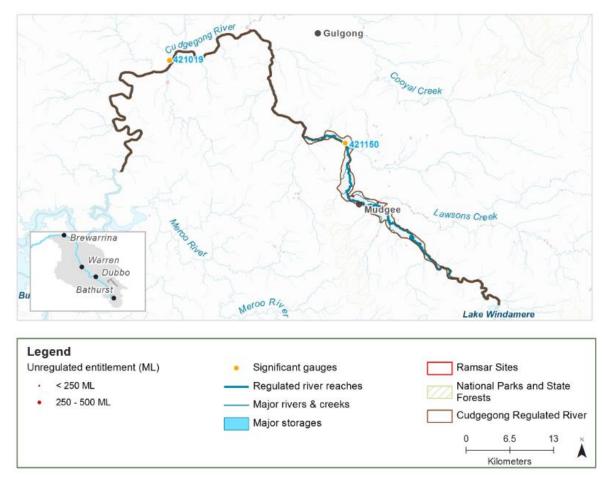
1.4 Selection of recommended management strategies

Table 2	Recommended management strategies proposed for unregulated planning
	units

Management strategy	How chosen, purpose and description
 Consider adding specific commence-to-pump rules in the Water Sharing Plan within five years to: reduce the length of CTF periods better protect low flows & baseflows 	 For consideration in PUs where: DPIE-Water (in prep) have determined that CTF periods or low flows/baseflows have been moderately or highly impacted; and DPIE-Water (in prep) has assessed the PU to be of moderate to very high environmental value or the LTWP has identified the PU for improvement in populations of key fish species (objectives NF7-9); and the total entitlement in the water source exceeds 450 ML⁶; and 20th percentile exceedance flow is greater than 5 ML/day⁷ Changes considered may include raising the commence-to-pump flow level from the current 'visible flow' to a minimum flow rate at a nominated gauge. This would protect some base flows providing small-bodied fish enough water for limited movement along channels and improving the maintenance and replenishment of refuge pools. Cease-to-pump levels could potentially remain at the current level (often 'visible flow'), allowing extractors to access water at the tail end of a flow. By raising commence-to-pump levels the initial flows which break dry periods could be protected.
Consider rostering access during low flow months for unregulated river access (and, where relevant, special additional high flow access) licences.	 For consideration in PUs where: DPIE-Water (in prep) have determined that low flows/baseflows or freshes have moderately or highly decreased; and DPIE-Water (in prep) has assessed the PU to be of moderate to very high environmental value or the LTWP has identified the PU for improvement in populations of key fish species (objectives NF7-9); and the total entitlement in the water source exceeds 450 ML⁶; and 20th percentile exceedance flow is greater than 5 ML/day⁷. Rostering take could involve an 'odds and evens' arrangement where a half of licence holders are able to access water on one day and the other half on the next. This is to reduce the daily extraction pressure on smaller flows where a significant proportion of the daily flow could be pumped if all pumps were activated simultaneously. Allowance would have to be made for travel times along longer systems.
Consider implementing a first flush rule to ensure periods between small freshes are not excessively prolonged and CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents	 For consideration in PUs where: DPIE-Water (in prep) has assessed the PU to be of moderate to very high environmental value or the LTWP has identified the PU for improvement in populations of key fish species (objectives NF7-9); and For the breaking of CTF periods: DPIE-Water (in prep) have determined that CTF periods have been moderately or highly increased; and/or For avoiding excessively prolonged periods between small freshes: DPIE-Water (in prep) have determined that freshes have been moderately or highly impacted; and the total entitlement in the water source exceeds 450 ML⁶; and 20th percentile exceedance flow is greater than 5 ML/day⁷.

 $^{^{\}rm 6}$ Water sources with total entitlement less than 450 ML are in the lower quartile of all water sources in the WRPA.

⁷ '20th percentile exceedance flow' means the flow that is met or exceeded on only 20% of days. Water sources with 20th percentile flows of less than 5 ML/day are in the lower quartile of all water sources in the WRPA.


Management strategy	How chosen, purpose and description
For the breaking of CTF periods, this will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.	The first flush rule would limit extraction following extended cease to flow events until a flushing flow of sufficient size has passed. This is aimed to ensure flows which break a cease-to-flow period are not reduced below the size required to replenish refuge pools and provide sufficient dilution quickly enough to avoid water quality problems associated with the destratification of refuge pools. The required event size would need to be determined for each identified PU and may vary depending on season. Where the first flush rule is implemented for avoiding excessively prolonged periods between small freshes, this is to allow the movement of larger-bodied fish species to prevent stranding and potentially to help trigger spawning. This will also help to protect the natural variability of flows. The size of the flow would be informed by the depth required for fish movement between refuges pools and potentially into other systems. In line with the EWRs in Part A of the LTWP (Section 4.3), the recommended maximum period
	between small freshes for fish movement ('small fresh 1') is 1 year.
Consider implementing total &/or individual daily extraction limits (IDELs & TDELs).	 For consideration in PUs where: DPIE-Water (in prep) have determined that low flows/baseflows, freshes or small overbanks (1.5 ARI flow) have moderately or highly decreased DPIE-Water (in prep) has assessed the PU to be of moderate to very high environmental value or the LTWP has identified the PU for improvement in populations of key fish species (objectives NF7-9) the total entitlement in the water source exceeds 450 ML⁶; and 20th percentile exceedance flow is greater than 5 ML/day⁷. Individual daily extraction limits (IDELs) would limit the amount of water a licence holder could take on any one day. Total daily extraction limits (TDELs) would limit the daily take for the zone. These limits could be set at different levels for different flow sizes, so the proportion of any flow taken is able to be better managed and highly impacted and important flow types could be preserved.
Consider targeted water access licence purchases from willing sellers	 For consideration in PUs where: DPIE-Water (in prep) have determined that CTF, low flow/baseflow, freshes or small overbanks (ARI's of 1.5) have a high degree of hydrological change; and DPIE-Water (in prep) has assessed the PU to be of very high environmental significance; and The LTWP has identified the PU for improvement in populations of key fish species (objectives NF7-9 of the LTWP); and The PU is either directly connected to or is within one PU of the Barwon (e.g. the Northern Marshes PU – which provides flow to the Lower Macquarie PU – which connects to the Barwon River); and where the total entitlement in the water source exceeds 450 ML⁶; and 20th percentile exceedance flow is greater than 5 ML/day⁷. Targeted purchases from willing sellers would help to protect flows in very high value PUs. They could be particularly useful in protecting flows that connect and provide flows to the Barwon River.
Ensure compliance with water access licence conditions including through metering of all licensed extraction	Applies to all PUs. To ensure all flows are protected from unauthorised extraction for the environment and other users.
Protect water for the environment that	Applies to all PUs which are downstream of regulated water sources where environmental water from held water entitlements or the EWA could be delivered.

Management strategy	How chosen, purpose and description				
originates from held water entitlements & the EWA.	To protect all flow sizes and provide connectivity downstream of watered areas. Environmental water releases may trigger responses such as fish spawning and productivity increases, which makes the protection of this water downstream more valuable.				
Maintain existing rules in the WSP to maintain	Applies to all PUs. These rules include trade rules and extraction rules.				
priority environmental	This strategy is to ensure no reduction in protection. Changes may be made				
assets	where recommended to increase protection.				
Consider restrictions to take in water sources bordering the Barwon River when embargoes on take exist in the Barwon River	 For consideration in PUs: where the total entitlement in the water source exceeds 450 ML⁶; and 20th percentile exceedance flow is greater than 5 ML/day⁷; and which connect directly or almost directly to the Barwon (that is, the lower part of the Marthaguy Creek PU - which connects to the Lower Macquarie near junction with the Barwon – is included). There are periods when extended low or nil flows in the Barwon River are considered so extreme that embargoes are placed on take there. Currently flows in the Macquarie-Castlereagh WRPA may be extracted without consideration of the needs of the downstream system. To help alleviate periods of extreme water shortage in the Barwon processing critical drought 				
Monitor for changes in	periods of extreme water shortage in the Barwon impacting critical drought refuges, consideration should be given to the protection of flows during embargoes in the Barwon-Darling WRPA. Applies to all PUs.				
water demand & review access rules if usage increases or if the pattern of use changes	Patterns of usage and demand may change with changing crop choices and practices. This may alter the seasonality and volume of take and have differing impacts on different flows.				
Review conditions on larger in-stream storages. This should include consideration of the need for environmental releases.	 For consideration in PUs where: there is a storage of 1000 ML or greater; and DPIE-Water (in prep) has assessed the PU to be of high or very high environmental significance; or the LTWP has identified the PU for improvement in populations of key fish species (objectives NF7-9 of the LTWP); and DPIE-Water (in prep) have determined that CTFs, low flows/baseflows, freshes or small overbanks have been moderately or highly impacted. This review would determine if the impacts on flows downstream of dams could be mitigated and the potential costs and benefits of any changes. 				
Improve the gauging	For consideration in PUs where:				
network to better indicate flow distribution	 there is limited or no flow data; and DPIE-Water (in prep) has assessed the PU to be of very high environmental significance; and the LTWP has identified the PU for improvement in populations of key fish species (objectives NF7-9 of the LTWP); and 				
/	 the total entitlement in the water source exceeds 450 ML⁶; and 20th percentile exceedance flow is greater than 5 ML/day⁷, or in PUs: 				
	 which connect directly to the Barwon River or almost directly connect to the Barwon (that is, the lower part of the Marthaguy Creek PU - which connects to the Lower Macquarie near junction with the Barwon – is included); and 				
	 which have extraction below the current most downstream gauge; and where the total entitlement in the water source exceeds 450 ML⁶; and 20th percentile exceedance flow is greater than 5 ML/day⁷. 				

2. Planning units that are regulated or affected by regulated water

2.1 Cudgegong Regulated River

The regulated section of the Cudgegong River flows west from Windamere Dam near Mudgee to Burrendong Dam. Three major tributaries flow into the Cudgegong River between Windamere and Burrendong dams; Lawsons, Wyaldra and Meroo creeks. In the upper reaches, the Cudgegong River flows through narrow valleys that broaden into a wider alluvial floodplain below Mudgee (Green et al. 2011).

Figure 2 Map of Cudgegong Regulated River PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Cudgegong River @ Yamble Bridge (421019) and Cudgegong River at Wilbertree Road (421150).

Named priority environmental assets

- Cudgegong River channel & riparian zone
- Cudgegong River floodplain and Wetlands: Putta Bucca
- Cudgegong River unregulated tributaries: Lawsons Creek

Key ecological values

CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling.

Native fish	Australian smelt ^{X + Y} carp gudgeon ^{X + Y} dwarf flat-headed gudgeon ^X eel-tailed catfish (E) ^{X + Y} flat-headed gudgeon ^{X + Y}	golden perch ^{X + Y} mountain galaxias ^{X + Y} Murray cod (V) ^{X + Y} purple-spotted gudgeon (E) ^Y				
Waterbirds	29 species recorded					
Native vegetation	800 ha of river red gum, & river oak riparian forest & woodland					
Registered water-dependent cultural assets	No water-dependent cultural assets identified in known site data. It is acknowledged that Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered					

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, flat-headed gudgeon, dwarf flat-headed gudgeon, mountain galaxias

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod, eel-tailed catfish, purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Table 3	LTWP EWRs for the regulated Cudgegong River as measured at Yamble Bridge (421019)
---------	---

Flow category EWR code ⁸	y and	Flow volume ⁸	Timing ⁸	Duration ⁸	Frequency (LTA frequency) ⁸	Maximum inter- event period ⁸	Additional requirements and comments ⁸
Cease-to-flow	CTF	0 ML/d		o longer occur in this rive may currently depend or	ons that fish & other plant & animal his reach.		
Very-low-flow	VLF	5 ML/d	Any time	No less than natural	No less than natural	No greater than natural	Flow of 5 ML/d at this gauge is estimated to be sufficient to maintain a flow to end of planning unit
	BF1	>40 ML/d	Anytime	In moderate years, 223 days per year. In very dry years, at least 97 days per year ⁹	Annually	1984–2017 observations did not exceed 47 days in 95% of years	
Baseflow	BF2	>40 ML/d	Sep–Mar	In moderate years, 127 days per season. In very dry years, at least 103 days per season ⁹	5-10 years in 10	2 years	
	BF3	>40 ML/d ¹⁰	where a hypoxic bottom layer is likely to develop to an extent that it could produce hypoxic conditions in the entire water column should subsequent mixing occur. Requirement more likely during periods of extreme heat and discretionary environment				As these flows are to maintain water quality, weir level management (where relevant), natural flows, operational water and non- discretionary environmental water should be used in the first instance before considering

⁸ Refer to Glossary for definitions of terms and explanatory text for EWRs

⁹ This is based on 1984–2017 observations, which show the baseflow threshold being exceeded more often than pre-development levels. As the system has been altered, it is a risk to revert to lower baseflows unless there is evidence to suggest otherwise. Duration for 'moderate years' is based on the number of days of flow in the median year. Duration for 'very dry years' is based on the 95th percentile year. BF2 'very dry year' duration is based on the 25th percentile as this flow is only required every 5–10 years.

¹⁰ Where threshold estimates are given these are provisional. Further work is required to confirm thresholds. See action on 'tools for preventing fish deaths due to stratification' in Table 22 of Part A.

Flow category and EWR code ⁸		Flow volume ⁸	Timing ⁸	Duration ⁸	Frequency (LTA frequency) ⁸	Maximum inter- event period ⁸	Additional requirements and comments ⁸		
			This flow wou high water ten	ld also help reduce the i nperatures.	risk of fish mortalit	y due to extremely	the use of discretionary environmental water.		
			Further work (develop flow r	see Table 22 of Part A) equirements.	is required to prov	vide tools to	DSF flow must be provided in a manner which considers potential impacts from		
De-stratifying flow	DSF	TBD ¹⁰	where a hypo conditions in t likely during p Further work (destratify refuge pools xic bottom layer has dev he entire water column eriods of extreme heat a (see Table 22 of Part A) rovide tools to develop f	produce hypoxic uirement more er identify risk	turning over refuge pools and initial water temperature increases from flows travelling over hot, dry river beds. Consult NSW DPI- Fisheries on interim flow protocols and in developing detailed future requirements (see recommended further work, Table 22 of Part A).			
	SF1	>200 ML/d	Anytime (ideally Oct– Apr)	10 days	Annually (10 years in 10) (100% of years)	1 year	Maintain the maximum rate of event recession within natural range: As a guide,		
Small fresh	SF2	200– 1,000 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	2 years	the 5 th percentile (fastest 5% of rates of fall) was 40% per day for 'pre-development' observed flows from 1939–1960 (e.g. 200ML-120ML-70ML-40ML).		
	SF3	Not applic	able. This is for	PUs connecting to Bar	won River				
Large fresh	LF1	>1,000 ML/d	Anytime (ideally Jul– Sep)	5 days	5–10 years in 10 (75% of years)	2 years	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall)		
J	LF2	>1,000 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years	was 40% per day for 'pre-development' observed flows from 1939–1960 (e.g. 1000ML- 600ML- 360ML -200ML)		
Overbank/	OB/ WS1	Not applic	Not applicable. This is for core wetland areas, which are not a feature of this PU						
Wetland flow	OB/ WS2	Not applic here.	able to this PU	as no flows greater that	n overbank have a	duration of 10 day	s. Floodplain specialist fish unlikely to spawn		

Flow categor EWR code ⁸	Tow category and Flow WR code ⁸ Volume ⁸ Timing ⁸		Duration ⁸	Frequency (LTA frequency) ⁸	Maximum inter- event period ⁸	Additional requirements and comments ⁸		
small ¹¹ *	OB/ WS3	>12,000 ML/d	Anytime (ideally Sep– Feb)	2 days (based on median duration of pre-development modelled & observed)	2–3 years in 10 (25% of years)	5 years	The objective for fish dispersal/condition is not fully satisfied as flows of 12,000 ML/d only occurred for the required 5-day duration in 3% of years under pre- development conditions. Hence this flow focuses on requirements for river red gum, which has a shorter duration of 2 days in this PU. There may also be benefit in longer duration flows (5 days) that are smaller (e.g. a flow of 3,000 ML/d may extend overbank in some sections of this PU).	
	OB/ WS4	Not applica	able as this PU	does not have large are	eas of non-woody	vegetation on the f	loodplain	
Overbank/ Wetland flow medium ¹¹ *	OB/ WM	Not applica	Not applicable as this PU does not have large areas of floodplain woodlands outside the riparian corridor					
Overbank/ Wetland flow large ¹¹ *	OB/ WL	Not applica	Not applicable as this PU does not have large areas of floodplain woodlands outside the riparian corridor					

¹¹ Grey shading (and * in 1st column of row) denotes that flows of this size are not able to be delivered. They are dependent on natural events but may be impacted by water policy, including flood mitigation zone management

2.2 Regulated Macquarie River – Burrendong Dam to Baroona

This section of the Macquarie River is regulated by Burrendong Dam and receives unregulated inflows from tributary streams including the Bell, Little and Talbragar rivers.

Water delivery to this section of the river is dominated by regulated releases from Burrendong Dam during spring and summer. These releases are primarily for irrigation and environmental orders. As a result, there is a degree of seasonal flow reversal compared to the natural hydrology of the system (Barma et al. 2011).

The lowest flows generally occur in autumn to winter to meet town and stock and domestic needs, which are continuous. These flows provide water for the lower portion of the river channel and habitats such pools (including weir pools).

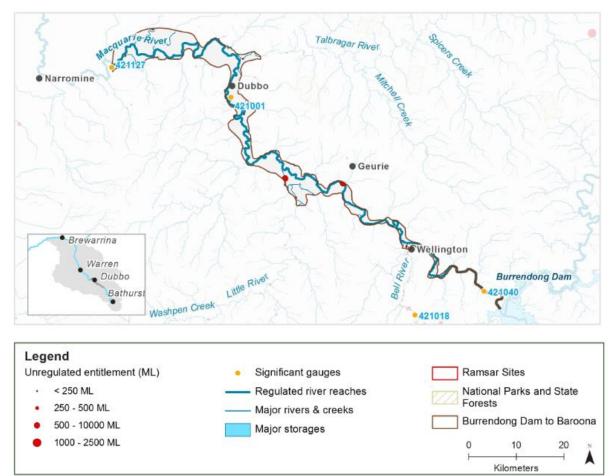


Figure 3 Map of Regulated Macquarie River – Burrendong Dam to Baroona PU. Area outside of PU has been faded. Significant gauges relevant to the PU are Macquarie River @ Baroona (421127), Macquarie River @ Dubbo (421001), Macquarie River @ D/S Burrendong Dam (421040).

Named priority environmental assets

- Macquarie River channel & riparian zone
- Macquarie River unregulated tributaries: Deep Creek, Bell River, Maryvale-Geurie, Talbragar River, Galwadgerie Gully, Spring Gully, Bushrangers Creek
- Floodplain wetlands: Brocklehurst overflow

Key ecological values CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling. Australian smelt X+Y Murray cod (V) X+Y heavy hearing X+Y

Native fish	bony herring ^{X + Y} carp gudgeon ^{X + Y} dwarf flat-headed gudgeon ^Y eel-tailed catfish (E) ^{X + Y} flat-headed gudgeon golden perch ^{X + Y} mountain galaxias ^X	Murray–Darling rainbowfish $^{X+Y}$ olive perchlet Y purple-spotted gudgeon (E) Y silver perch (V) $^{X+Y}$ trout cod (E) $^{X+Y}$ un-specked hardyhead $^{X+Y}$				
Waterbirds	47 species recorded, including: Australian painted snipe (E), blue-billed duck (V), magpie goose (V), marsh sandpiper (C,J,R) & sharp-tailed sandpiper (C,J,R)					
Native vegetation	3356 ha of water-dependent native vegetation communities, including 2100 ha of riparian river red gum & 1200 ha of floodplain/riverine river red gum forests & woodlands					
Registered water- dependent cultural assets	Camp sites, carved trees & scarred trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered					

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp-gudgeon, dwarf flat-headed gudgeon, flat-headed gudgeon, mountain galaxias, Murray-Darling rainbowfish, & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish (E), Murray cod (V), trout cod (E), purple-spotted gudgeon (E)

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch, Murray cod (V)

NF8 Increase the prevalence and/or expand the population of key moderate to long-lived riverine specialist native fish species into new areas (within historical range): Eel-tailed catfish

Flow category EWR code ¹²	/ and	Flow volume ¹²	Timing ¹²	Duration ¹²	Frequency (LTA frequency) ¹²	Maximum inter- event period ¹²	Additional requirements and comments ¹²	
Cease-to-flow	CTF	0 ML/d		no longer occur in t s may currently dep			onditions, which fish & other plant & animal d in this reach.	
Very-low-flow	VLF	1 ML/d at <u>Baroona</u>	Any time	No less than natural	No less than natural	No greater than natural	As measured at Baroona gauge (421127)	
	BF1	> 200 ML/d	Anytime	In moderate years, 223 days per year. In very dry years, at least 97 days per year ¹³		1984–2017 observations did not exceed 47 days in 95% of years		
Baseflow	BF2	> 200 ML/d	Sep–Mar	In moderate years, 127 days per season. In very dry years, at least 103 days per season ¹³	5–10 years in 10 (75% of years)	2 years		
	BF3	> 200 ML/d ¹⁴	where a hyp	s required to avoid stratification during periods of identified high risk here a hypoxic bottom layer is likely to develop to an extent that it ould produce hypoxic conditions in the entire water column should				

Table 4 LTWP EWRs for the Macquarie River between Burrendong and Baroona as measured at Dubbo (421001) (except where noted)

¹² Refer to Glossary for definitions of terms and explanatory text for EWRs

¹³ This is based on 1984–2017 observations, which show the baseflow threshold being exceeded more often than pre-development levels. As the system has altered, it is a risk to revert to lower baseflows unless there is evidence to suggest otherwise. Duration for 'moderate years' is based on the number of days of flow in the median year. Duration for 'very dry years' is based on the 95th percentile year. BF2 'very dry year' duration is based on the 25th percentile as this flow is only required every 5–10 years.

¹⁴ Where threshold estimates are given, these are provisional. Further work is required to confirm thresholds. See action on 'tools for preventing fish deaths due to stratification' in Table 22 of Part A. Initial estimate for BF3 may need to be greater to accommodate slower flows in weir pools – e.g. a flow of 0.03 m/s at Dubbo weir pool is achieved at 400ML/day

Flow category EWR code ¹²	y and	Flow volume ¹²	Timing ¹²	Duration ¹²	Frequency (LTA frequency) ¹²	Maximum inter- event period ¹²	Additional requirements and comments ¹²		
			extreme hea This flow wo extremely hi Further work	mixing occur. Requ at and low flow. buld also help reduc gh water temperatu < (see Table 22 of F / requirements.	e the risk of fish mo ires.	environmental water should be used in the first instance before considering the use of discretionary environmental water. DSF flow must be provided in a manner which considers potential impacts from turning over refuge pools and initial water temperature			
De-stratifying flow	DSF	TBD ¹⁴	risk where a hypoxic con Requiremen Further work		ver has developed a water column when periods of extreme Part A) is required to	and could produce n mixed. heat and low flow. b better identify risk	increases from flows travelling over hot, dry river beds. Consult NSW DPI-Fisheries on interim flow protocols and in developing detailed future requirements (see recommended further work, Table 22 of Part A).		
	SF1	> 500 ML/d	Anytime (ideally Oct–Apr)	10 days	Annually (10 years in 10)	1 year	Maintain the maximum rate of event recession		
Small fresh	SF2	>500–6,000 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	2 years	within natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 30% per day for 'pre-development' observed flows from 1912-1960 (e.g. 500ML – 350ML – 200ML).		
	SF3	Not applicab	le. This is fo	r PUs connecting to	Barwon River	1			
Large fresh	LF1	> 6,000 ML/d	Anytime (ideally Jul– Sep)	5 days	5–10 years in 10 (75% of years)	2 years	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 35%		
5	LF2	> 6,000 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years	per day for 'pre-development' observed flows from 1912–1960 (e.g. 6000ML – 4000ML – 2500ML).		
Overbank/	OB/ WS	1 Not applicab	le. This is fo	r core wetland area	s, which are not a f	eature of this PU			
Wetland flow						te olive perchlet are likely to be supported in this igh the 10-day overbank flow did not occur			

Flow categor EWR code ¹²	y and	Flow volume ¹²	Timing ¹²	Duration ¹²	Frequency (LTA frequency) ¹²	Maximum inter- event period ¹²	Additional requirements and comments ¹²	
Small ¹⁵ *		flows (short	er overbank	flows and freshes) a	are important for dis	persal and producti	uitable for fish that have bred downstream. Other vity and some of these larger flows will contribute ay provide breeding opportunities for this fish	
	OB/ WS3	> 65,000 ML/d	Anytime (ideally Sep–Feb)	2 days (based on median duration of pre- development modelled & observed)	2–3 years in 10 (25% of years)	5 years	The objective for fish dispersal/condition is not fully satisfied as flows of 65,000 ML/d only occurred for the required 5-day duration in 6% of years under pre-development conditions. Hence this flow focuses on requirements for river red gum, which has a shorter duration of 2 days in this PU.	
	OB/ WS4	Not applical	ble. This is fo	r non-woody wetlar	nd vegetation, which	n is not an extensive	e feature of the floodplain this PU	
Overbank/ Wetland flow Medium ¹⁵ *	OB/ WM	Not assesse	Not assessed. Non-riparian river red gum forests & woodlands are less extensive in this PU					
Overbank/ Wetland flow Large ¹⁵ *	OB/ WL	Not applical	Not applicable as extensive areas of floodplain woodlands outside the riparian corridor are not a feature of this PU					

¹⁵ Grey shading (and * in 1st column of row) denotes that flows of this size are not able to be delivered. They are dependent on natural events but may be impacted by water policy.

2.3 Regulated Macquarie River – Baroona to Warren Weir

The Macquarie River becomes a distributary system downstream from Narromine. From here, the river channel starts to lose integrity with a broader floodplain and distributary creeks develop.

Water delivery to this section of the Macquarie River is dominated by regulated releases from Burrendong Dam for town water supply, stock and domestic needs, irrigation orders and environmental requirements (largely targeted at the Macquarie Marshes). The lowest flows generally occur in the late autumn to winter period. Higher flows occur in spring to late summer for irrigation orders and environmental water releases. This has created a degree of seasonal flow reversal compared to the natural hydrology of the system (Barma et al. 2011).

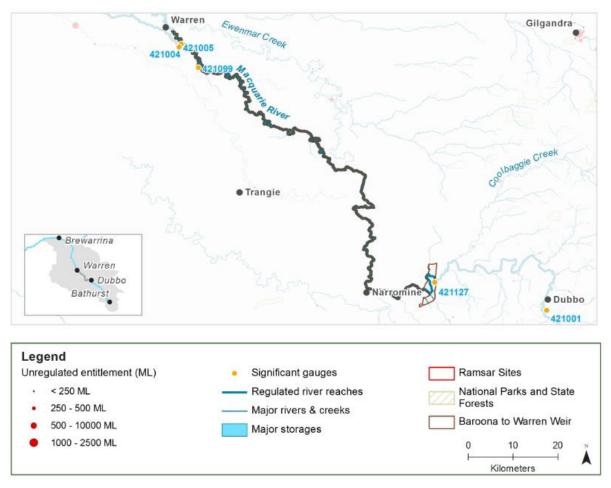


Figure 4

Map of Regulated Macquarie River – Burrendong Dam to Baroona PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Macquarie River @ Baroona (421127), Macquarie River @ Dubbo (421001), Macquarie River @ D/S Burrendong Dam (421040).

Named priority environmental assets

- Macquarie River channel & riparian zone
- Macquarie River Distributaries: Redinville break, Gunningbar Creek, Balaringar creek
- Macquarie River Floodplain and Wetlands

Key ecological values CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling.

Native fish	Australian smelt $^{X+Y}$ bony herring $^{X+Y}$ carp-gudgeon $^{X+Y}$ dwarf flat-headed gudgeon Y eel-tailed catfish (E) $^{X+Y}$ flat-headed gudgeon $^{X+Y}$ golden perch $^{X+Y}$ mountain galaxias X	Murray cod (V) $^{X+Y}$ Murray-Darling rainbowfish $^{X+Y}$ olive perchlet Y purple-spotted gudgeon (E) Y silver perch (V) $^{X+Y}$ spangled perch X trout cod (E) Y un-specked hardyhead $^{X+Y}$				
Waterbirds	15 species recorded					
Native vegetation	3,083 ha of water-dependent native vegetation communities, including: river red gum (2765 ha), coolibah (4 ha), black box (9 ha), lignum (15 ha) & non-woody wetland vegetation (20 ha)					
Registered water- dependent cultural assets	Carved trees, scarred trees & camp sites It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered					

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp-gudgeon, dwarf flat-headed gudgeon, flat-headed gudgeon, mountain galaxias, Murray-Darling rainbowfish, & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch, spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish (E), Murray cod (V), trout cod (E), purple-spotted gudgeon (E)

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch, Murray cod (V)

NF8 Increase the prevalence and/or expand the population of key moderate to long-lived riverine specialist native fish species into new areas (within historical range): Eel-tailed catfish

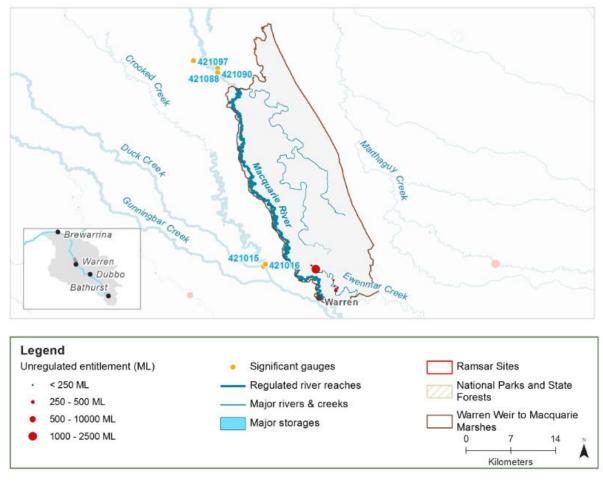
Table 5	LTWP EWRs for the Macquarie River between Baroona & Warren as measured at Warren Weir (421004)
---------	--

Flow category and EWR code ¹⁶		Flow volume ¹⁶	Timing ¹⁶	Duration ¹⁶	Frequency (LTA frequency) ¹⁶	Maximum inter- event period ¹⁶	Additional requirements and comments ¹⁶
Cease-to-flow	CTF	0 ML/d	CTF events occurred in around 50% of years under the natural system but now only occur rarely. Due to the changed conditions that fish & other plant & animal communities may currently depend on, CTF events should be avoided in this reach.				
Very-low-flow	VLF	1 ML/d	Any time	No less than natural	No less than natural	No greater than natural	
Baseflow	BF1	>200 ML/d	Anytime	In moderate years, 271 days per year. In very dry years, at least 152 days per year ¹⁷	Annually	1984–2017 observations did not exceed 37 days in 95% of years	
	BF2	>200 ML/d	Sep–Mar	In moderate years, 190 days per season. In very dry years, at least 161 days per season ¹⁷ .	5–10 years in 10 (75% of years)	2 years	
	BF3	>200 ML/d ¹⁸	As required to avoid stratification during periods of identified high risk where a hypoxic bottom layer is likely to develop to an extent that it could produce hypoxic conditions in the entire water column should subsequent mixing occur. Requirement more likely during periods of extreme heat and low flow.				As this flow is to maintain water quality, weir level management (where relevant), natural flows, operational water and non- discretionary environmental water should be used in the first instance before considering

¹⁶ See Table 1 for definitions and explanatory text for EWRs

¹⁷ This is based on 1984–2017 observations, which show the baseflow threshold being exceeded more often than pre-development levels. As the system has altered, it is a risk to revert to lower baseflows unless there is evidence to suggest otherwise. Duration for 'moderate years' is based on the number of days of flow in the median year. Duration for 'very dry years' is based on the 95th percentile year. BF2 'very dry year' duration is based on the 25th percentile as this flow is only required every 5–10 years.

¹⁸ Where threshold estimates are given, these are provisional. Further work is required to confirm thresholds. See action on 'tools for preventing fish deaths due to stratification' in Table 22 of Part A. Initial flow estimate for BF3 may need to be greater to accommodate slower flows in weir pools – e.g. a flow of 0.03 m/s at Dubbo weir pool is achieved at 400ML/day, and this may be similar at Gin Gin Weir and Warren Weir.


Flow category and EWR code ¹⁶		Flow volume ¹⁶	Timing ¹⁶	Duration ¹⁶	Frequency (LTA frequency) ¹⁶	Maximum inter- event period ¹⁶	Additional requirements and comments ¹⁶		
			This flow would also help reduce the risk of fish mortality due to extremely high water temperatures.				the use of discretionary environmental water. DSF flow must be provided in a manner which considers potential impacts from		
			Further work (see Table 22 of Part A) is required to provide tools to develop flow requirements.						
De-stratifying flow	DSF	TBD ¹⁸	risk where a hypoxic con more likely o Further work	to destratify refuge pool hypoxic bottom layer had ditions in the entire wate during periods of extreme (see Table 22 of Part A provide tools to develop	as developed and er column when mi e heat and low flo () is required to be	could produce ixed. Requirement w. etter identify risk	turning over refuge pools and initial water temperature increases from flows travelling over hot, dry river beds. Consult NSW DPI- Fisheries on interim flow protocols and in developing detailed future requirements (see recommended further work, Table 22 of Part A).		
Small fresh	SF1	>450 ML/d	Anytime (ideally Oct–Apr)	10 days	Annually (10 years in 10)	1 year	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 20% per day for 'pre-development' observed flows from 1902–1960 (e.g. 450ML - 360ML - 280ML)		
	SF2	450–4,000 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	2 years			
	SF3	Not applicable. This is for PUs connecting to Barwon River							
Large fresh	LF1	>4,000 ML/d	Anytime (ideally Jul– Sep)	5 days	5–10 years in 10 (75% of years)	2 years	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 25% per day for 'pre-development' observed flows from 1902–1960 (e.g. 4000ML - 3000ML - 2250ML).		
	LF2	>4,000 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years			
	OB/ WS1	Not applicable. This is for core wetland areas, which are not a feature of this PU							
Overbank/ Wetland flow	OB/ WS2	Not applicable to this planning unit – flows of 10 days duration occur only rarely in ideal season (13% of years under modelled natural conditions). DPIF note olive perchlet are likely to be supported in this PU. Hence, an objective for floodplain specialist fish (NF3) exists in this PU. Note that although the 10-day overbank flow only occurred infrequently, and regular breeding is not likely is							

Flow category and EWR code ¹⁶		Flow volume ¹⁶	Timing ¹⁶	Duration ¹⁶	Frequency (LTA frequency) ¹⁶	Maximum inter- event period ¹⁶	Additional requirements and comments ¹⁶	
Small ¹⁹ *		this PU, the habitat is considered suitable for fish that have bred downstream. Other flows (shorter overbank flows and freshes) are important for dispersal and productivity and some of these larger flows will contribute to overbanks in downstream planning units (where the channel is smaller) which may provide breeding opportunities for this fish guild.						
	OB/ WS3	>12,000 ML/d	Anytime (ideally Sep– Feb)	5 days for fish dispersal/condition. 3 days for riparian river red gum	2–3 years in 10 (25% of years)	5 years		
OB/WS4 Not applicable as non-woody vegetation is not a p this PU is considered covered by medium overbar						on the floodplain of	f this PU. Non-woody vegetation that is in	
Overbank/ Wetland flow Medium ^{19 *}	OB/ WM	>16,000 ML/d	Anytime (ideally Aug–Mar)	Persistence of water 3 months for wetland depressions. Flow of 3 days (median natural duration) required to fill depressions & soil profile	5 years in 10 (50% of years)	5 years		
Overbank/ Wetland flow Large ^{19 *}	OB/ WL	>18,000 ML/d	Anytime (ideally Aug– Mar)	Persistence of water. 3 months for wetland depressions. Flow of 3 days (median natural duration) required to fill depressions & soil profile.	2–3 years in 10	5–10 years	Black box & coolibah are not a prominent feature of this PU.	

¹⁹ Grey shading (and * in 1st column of row) denotes that flows of this size are not able to be delivered. They are dependent on natural events but may be impacted by water policy including floodplain harvesting and flood mitigation zone management.

2.4 Warren Weir to Macquarie Marshes

This PU includes the Macquarie River and tributaries, including Ewenmar Creek. The Macquarie River flows north for approximately 100 km, from the township of Warren to Marebone Weir. This PU encompasses the 'Macquarie River at Warren Weir' water source area of the unregulated and alluvial WSP and the lower section of the Ewenmar Creek water source area, in line with the Macquarie River Corridor water management area boundary of Thomas *et al.* (2010).

Figure 5

Map of Warren Weir to Macquarie Marshes PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Marebone Break @ D/S Marebone Regulator (421088) and Macquarie River @ D/S Marebone Weir (421090)

Named priority environmental assets

- Macquarie River channel, anabranches & riparian zone
- Floodplain Wetlands
- Distributary Creeks
- Five Mile Cowal
- Lower Ewenmar Creek
- Junction Creek
- Umangla Cowal

Key ecological values CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling.							
Native fish	Australian smelt $^{X+Y}$ bony herring $^{X+Y}$ carp-gudgeon $^{X+Y}$ eel-tailed catfish (E) $^{X+Y}$ flat-headed gudgeon $^{X+Y}$ golden perch $^{X+Y}$	Murray cod (V) ^{X + Y} Murray–Darling rainbowfish ^{X + Y} olive perchlet ^Y silver perch (V) ^{X + Y} spangled perch ^{X + Y} un-specked hardyhead ^{X + Y}					
Waterbirds	48 species recorded, including: Australasian bittern (E), cotton pygmy-goose (E) & magpie goose (V)						
Native vegetation	16,534 ha of water-dependent native vegetation communities, including: river red gum (7373 ha), coolibah (250 ha), black box (890 ha), lignum (43 ha) & non-woody wetland vegetation (638 ha)						
Registered water-dependent cultural assets	Scarred trees, ceremony & dreaming sites. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered						

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring (V), carp gudgeon, flat-headed gudgeon, Murray–Darling rainbowfish & unspecked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch, spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish (E), Murray cod (V)

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch, Murray cod (V)

Table 6LTWP EWRs for the Macquarie River between Warren and the Macquarie Marshes measured as the combined flow at the Marebone
Break and Macquarie River below Marebone Weir gauges (421088 + 421090)

Flow category EWR code ²⁰	and	Flow volume ²⁰	Timing ²⁰	Duration ²⁰	Frequency (LTA frequency ⁾²⁰	Maximum inter-event period ²⁰	Additional requirement and comments ²⁰
Cease-to-flow	CTF	0 ML/d		s occurred in around 60% of that fish & other plant & anim			ely. Due to the changed should be avoided in this reach.
Very-low-flow	VLF	1 ML/d	Any time	No less than natural	No less than natural	No greater than natural	A flow of 1 ML/d to come from upstream flow not adjustment of weir gates as the VLF is to maintain a trickle flow into in- channel fish refuge pools in PU
	BF1	>100 ML/d	Anytime	In moderate years, 318 days per year. In very dry years, at least 150 days per year ²¹	Annually	1986–2017 observations did not exceed 60 days in 95% of years	
Baseflow	BF2	>100 ML/d	Sep–Mar	In moderate years, 201 days per season. In very dry years, at least 181 days per season ²¹	5–10 years in 10 (75% of years)	2 years	
BF3 >30 ML/d ²² layer is likely to water column s			layer is like water colu	d to avoid stratification during ely to develop to an extent tha mn should subsequent mixing eat and low flow	at it could produce hypoxic	conditions in the entire	As these flows are to maintain water quality, weir level management (where relevant), natural flows, operational

²⁰ Refer to Glossary for definitions of terms and explanatory text for EWRs

²¹ This is based on 1986–2017 observations, which show the very-low-flow and baseflow threshold being exceeded more often that pre-development levels. As the system has altered, it is a risk to revert to less frequent flows unless there is evidence to suggest otherwise. Duration for 'moderate years' is based on the number of days of flow in the median year. Duration for 'very dry years' is based on the 95th percentile year. BF2 'very dry year' duration is based on the 25th percentile as this flow is only required every 5-10 years.

²² Where threshold estimates are given, these are provisional. Further work is required to confirm thresholds. See action on 'tools for preventing fish deaths due to stratification' in Table 22 of Part A. Initial estimates for BF3 may need to be greater to accommodate slower flows in weir pools – e.g. Marebone Weir

Flow category EWR code ²⁰	/ and	Flow volume ²⁰	Timing ²⁰	Duration ²⁰	Frequency (LTA frequency ⁾²⁰	Maximum inter-event period ²⁰	Additional requirement and comments ²⁰	
	This flow would also help reduce the risk of fish mortality due to extremely high water temperatures. Further work (see Table 22 of Part A) is required to provide tools to develop flow requirements.					water and non-discretionary environmental water should be used in the first instance		
De-stratifying flow	DSF	TBD ²²	bottom lay when mixe Further wo	d to destratify refuge pools d er has developed and could ed. Requirement more likely c ork (see Table 22 of Part A) is velop flow requirements.	produce hypoxic conditions during periods of extreme he	in the entire water column eat and low flow.	before considering the use of discretionary environmental water. DSF flow must be provided in a manner which considers potential impacts from turning over refuge pools and initial water temperature increases from flows travelling over hot, dry river beds. Consult NSW DPI-Fisheries on interim flow protocols and in developing detailed future requirements (see recommended further work, Table 22 of Part A).	
	SF1	>350 ML/d	Anytime (ideally Oct–Apr)	10 days	Annually (10 years in 10)	1 year	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th	
Small fresh	SF2	350–2,500 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	percentile (fastest 5% of rates of fall) was 30% per day for		
	SF3	Not applicable	e. This is fo	r PUs connecting to Barwon	River			
Large fresh	LF1	>2,500 ML/d	Anytime (ideally Jul–Sep)	5 days	5–10 years in 10 (75% of years)	2 years	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest 5% of rates	

Flow category EWR code ²⁰	and	Flow volume ²⁰	Timing ²⁰	Duration ²⁰	Frequency (LTA frequency ⁾²⁰	Maximum inter-event period ²⁰	Additional requirement and comments ²⁰
	LF2	>2,500 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years	of fall) was 35% per day for 'without-development' modelled flows (e.g. 2500ML- 1625ML-1060ML).
	OB/ WS1	Not applicable	e. This is for	r core wetland areas, which a	re not a feature of this PU		
	OB/ WS2	>4,000 ML/d	Oct–Apr	10 days	5–10 years in 10 (75% of years)	4 years	
Overbank/ Wetland flow Small ²³ *	OB/ WS3	>4,000 ML/d	Anytime (ideally Sep–Feb)	5 days (is also the median duration of flows of this size, so 5 days is also used for riparian river red gum requirements)	2–3 years in 10 (25% of years)	5 years	
	OB/ WS4	>4,000 ML/d	Anytime (ideally Aug–Mar)	Persistence of water 3 months. Flow of 5 days (median natural duration) required to fill depressions & soil profile.	8–9 years in 10 (85% of years)	2 years	
Overbank/ Wetland flow Medium23 ^{23 *}	OB/ WM	> 5,500 ML/d	Anytime (ideally Aug–Mar)	Persistence of water 3 months for wetland depressions. Flow of 3 days (median natural duration) required to fill depressions & soil profile	5 years in 10 (50% of years)	5 years	
Overbank/ Wetland flow Large ^{23 *}	OB/ WL	Not assessed	Not analys	ed. Flows over 5,500 ML/d m	ay cover this requirement.		

²³ Grey shading (and * in 1st column of row) denotes that flows of this size are not able to be delivered. They are dependent on natural events but may be impacted by water policy including floodplain harvesting and flood mitigation zone management.

2.5 Macquarie Marshes

2.5.1 Macquarie Marshes – items relevant to all planning units (southern, northern and eastern Marshes)

The Macquarie Marshes are partly in the 'Lower Macquarie River' water source area of the unregulated and alluvial WSP.

Relevant management rules for the unregulated sections of the Marshes PUs (southern, northern & eastern)					
Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks	
See Table 1 for key	H-	M-	M-	H-/M-	

The Lower Macquarie Water Source has the largest volume of unregulated water entitlement in the WRPA, at 51,888 ML. Part of this water source is covered by the Lower Macquarie PU. Around 30,000 ML of entitlement is in the area covered by the Macquarie Marshes planning units. This area includes at least 3 large licences (>2,500 ML) and around 20 licences of greater than 500 ML/day within the Marshes. One of these is a 'high flow' licence (around 1,500 ML of entitlement) for which take is only permitted when flow at the Bells Bridge (Carinda) gauge exceeds 245 ML/day. As assessed by the Macquarie-Castlereagh WRPA Risk Assessment (DPIE-Water, in prep) the Lower Macquarie Water Source has experienced a reduction in CTF events, but a moderate to high decrease in low and baseflows, freshes and overbank events compared to near-natural conditions.

Gum Cowal management zone	Trade INTO water source: Not permitted.Trade WITHIN water source: permitted in a downstream direction only.No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow.
Lower Macquarie River upstream management zone	Trade INTO water source: Not permitted. Trade WITHIN water source: permitted in a downstream direction only. Access rules from rivers & creeks: cease to pump when the flow at Macquarie River at Oxley (421022) ≤500 ML/d For natural off-river pools: No pool drawdown
	For pump sites not within a natural pool, cease to pump rule when no visible flow.

Recommended management strategies for the unregulated sections of the Marshes PUs (southern, northern & eastern)

- Consider rostering landholder water access during low flow months
- Consider implementing total &/or individual daily extraction limits (IDELS & TDELS)
- Consider targeted water access licence purchases from willing sellers (Note licence purchase may not reduce extraction of events in dry periods water normally taken by the purchased licence may be taken by downstream licences. In such cases purchases may need to target the most downstream licences)
- Consider implementing a first flush rule to ensure periods between small freshes are not excessively prolonged
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Protect water for the environment that originates from held water entitlements (HEW) & the EWA.
- Maintain existing rules in the WSP to maintain priority environmental assets
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

Table 7 LTWP EWRs for the Macquarie Marshes PUs (southern, northern and eastern)

Flows are to be met at both the gauge on the Macquarie River downstream Marebone (421090) and at Oxley Station (421022) unless otherwise stated.

Flow catego EWR code ²		Flow volume ²⁴	Timing ²⁴	Duration ²⁴	Frequency (LTA frequency) ²⁴	Maximum inter- event period ²⁴	Additional requirements and comments ²⁴
Cease-to- flow	CTF	0 ML/d	In line with natural. Typically occurs Nov–Jun	<u>Maximum</u> duration: In moderate years, events should not persist for more than 5 days on the Macquarie at Marebone or at Oxley. In very dry years, events should not persist for more than 30 days at Marebone or Oxley ²⁵	Should not occur in more than 20% of years ²⁵		This is to maintain a trickle flow into in- channel fish refuge pools in the Southern Marsh PU
Very-low- flow	VLF	10 ML/d @ Marebone (421090) 5 ML/d @ Oxley (421022)	Anytime	In moderate years, 359 days per year at Marebone & Oxley. In very dry years, at least 259 days per year at Marebone & 238 at Oxley ²⁶	No less than natural (Annually)	1986–2017 observations did not exceed 21 days at Marebone or 33 days at Oxley in 95% of years	This is to maintain a trickle flow into in- channel fish refuge pools (particularly Oxley Waterhole) in the Southern Marsh PU
Baseflow	BF1	>65 ML/d	Anytime	In moderate years, 280 days per year at Marebone & Oxley. In very dry years, at least 90 days per year at Marebone & Oxley ²⁷	Annually	1986–2017 observations did not exceed 55 days in 95% of years	

²⁴ Refer to Glossary for definitions of terms and explanatory text for EWRs

²⁶ This is based on 1986–2017 observations for the Macquarie River at Marebone and 1984–2017 observations at Oxley. Duration for 'moderate years' is based on the duration of the median year. Duration for 'very dry years' is based on the 95th percentile year.

²⁷ Uses Marebone 1986–2017 observations (with some rounding). These are higher than the Oxley results (though lower than the modelled pre-development results for both gauges). Because of the importance of Oxley Waterhole, the higher figure from Marebone is used. Duration for 'moderate years' is based on the number of days of flow in the

²⁵ This is based on 1986–2017 observations for the Macquarie River at Marebone and 1984–2017 observations at Oxley. There has been some rounding and averaging between the two gauges. These show CTF events occur less often than pre-development levels. Because the system has altered it is a risk to revert to less frequent flows unless there is evidence to suggest otherwise. Oxley Waterhole is an important fish refuge and in this PU. Duration for 'moderate years' is based on the number of days of flow in the median year. Duration for 'very dry years' is based on the 95th percentile year.

	Flow category and Flow EWR code ²⁴ volume ²⁴		Timing ²⁴	Duration ²⁴	Frequency (LTA frequency) ²⁴	Maximum inter- event period ²⁴	Additional requirements and comments ²⁴
	BF2	>65 ML/d	Sep–Mar	In moderate years, 180 days per season at Marebone & Oxley. In very dry years, at least 125 days per season at Marebone & Oxley ²⁷	5–10 years in 10 (75% of years)	2 years	
	BF3	>30 ML/d @ Marebone (421090) >20 ML/d @ Oxley (421022) ²⁸	layer is likely to deve column should subse heat and low flow. This flow would also temperatures.	s required to avoid stratification during periods of identified high risk where a hypoxic bottom over is likely to develop to an extent that it could produce hypoxic conditions in the entire water olumn should subsequent mixing occur. Requirement more likely during periods of extreme eat and low flow. his flow would also help reduce the risk of fish mortality due to extremely high water			
De- stratifying flow	DSF	TBD ²⁸	bottom layer has dev when mixed. Require Further work (see Ta	required to destratify refuge pools during periods of identified high risk where a hypoxic trom layer has developed and could produce hypoxic conditions in the entire water column en mixed. Requirement more likely during periods of extreme heat and low flow. The DSF flow be provided manner whice considering to discretionary environment The DSF flow be provided to better identify risk periods and provide tools develop flow requirements.			environmental water should be used in the first instance before considering the use of discretionary environmental water. The DSF flow must be provided in a manner which considers potential impacts from turning over refuge pools and initial water

median year. Duration for 'very dry years' is based on the 95th percentile year. BF2 'very dry year' duration based on the 25th percentile because this flow is only required every 5–10 years.

²⁸ Where threshold estimates are given, these are provisional. Further work is required to confirm thresholds. See action on 'tools for preventing fish deaths due to stratification' in Table 22 of Part A.

Flow catego EWR code ²		Flow volume ²⁴	Timing ²⁴	Duration ²⁴	Frequency (LTA frequency) ²⁴	Maximum inter- event period ²⁴	Additional requirements and comments ²⁴
							river beds. Consult NSW DPI-Fisheries on interim flow protocols and in developing detailed future requirements (see recommended further work, Table 22 of Part A).
	SF1	>300 ML/d	Anytime (ideally Oct–Apr)	10 days	Annually (10 years in 10)	1 year	Maintain the maxi- mum rate of event recession within natu- ral range: As a guide,
Small fresh	SF2	>300–1,000 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	2 years	the 5th percentile (fastest 5% of rates of fall) was 30% per day for 'pre-development' observed flows at Oxley from 1943– 1960 (e.g. 300ML - 210ML - 150ML)
	SF3	Not applicable	e. This is for PUs conn	ecting to Barwon River			
	LF1	>1,000 ML/d	Anytime (ideally Jul– Sep)	5 days	5–10 years in 10 (75% of years)	2 years	Maintain the maxi- mum rate of event recession within natu-
Large fresh	LF2	>1,000 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years	ral range: As a guide, the 5th percentile (fastest 5% of rates of fall) was 20% per day for 'pre-development' observed flows at Oxley from 1943– 1960 (e.g. 1000ML - 700ML - 550ML)

Flow catego EWR code ²		Flow volume ²⁴	Timing ²⁴	Duration ²⁴	Frequency (LTA frequency) ²⁴	Maximum inter- event period ²⁴	Additional requirements and comments ²⁴
	OB/ WS1	See Table 8					
Overbank/ Wetland	OB/ WS2	>2,900 ML/d at Marebone, >2,600 ML/d at Oxley	Oct–Apr	10 days	5–10 years in 10 (75% of years)	4 years	
flow Small	OB/ WS3	>2,900 ML/d at Marebone, >2,600 ML/d at Oxley	Anytime (ideally Sep–Feb)	5 days	2–3 years in 10 (25% of years)	5 years	
	OB/ WS4	See Table 8					
Overbank/ Wetland flow Medium	OB/ WM	See Table 8	Table 8				
Overbank/ Wetland flow Large ²⁹ *	OB/ WL	See Table 8	e Table 8				

²⁹ Grey shading (and * in 1st column of row) denotes that flows of this size are unable to be delivered with discretionary environmental water (although some water can be delivered to extend events). Flows of this size are dependent on natural events but may be impacted by water policy, including floodplain harvesting and flood mitigation zone management.

Flow category EWR code ³¹	y and	Flow volume ³¹	Timing ³¹	Duration (retention of standing water) ³¹	Frequency (LTA frequency) ³¹	Maximum inter-event period ³¹
Overbank/ Wetland flow Small OB/ WS4	OB/ WS1	60,000 ML within 90 days at combined River & Marebone Break gauges downstream of Marebone ³²	Anytime (ideally Aug–Mar)	3 months	9–10 years in 10 (95% of years)	18 months
	100,000 ML within 90 days at combined River & Marebone Break gauges downstream of Marebone ³²	Anytime (ideally Aug–Mar)	3 months	8–9 years in 10 (85% of years)	2 years	
Overbank/ Wetland flow	OB/ WM	Northern and southern Marshes: 250,000 ML within 120 days at combined River & Marebone Break gauges downstream of Marebone ³²	Anytime	3 months	5 years in 10 (50%	4 years
Medium		Eastern Marshes: 8000 ML ³³ at 400 ML/day or above at 'Gum Cowal at bifurcation' within 40 days ³²	(ideally Aug–Mar)		of years)	.,

Table 8 LTWP EWRs for the Macquarie Marshes PUs (southern, northern and eastern³⁰) – Wetland inundation flows reliant on total event volume for whole-of-Marsh benefit.

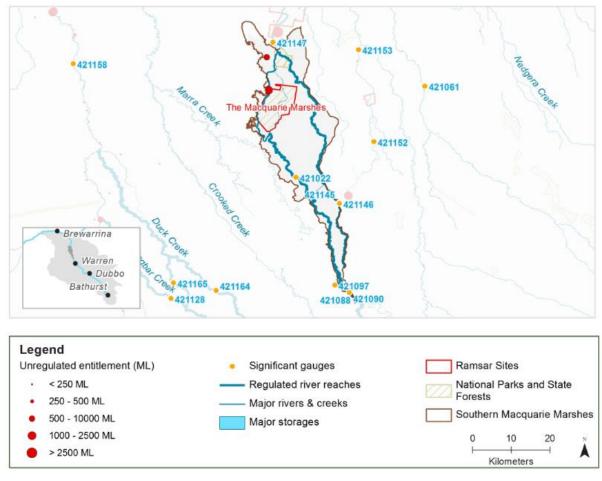
³⁰ The eastern Marshes are not targeted for small overbank/wetland flows. For medium overbank/wetland flows a specific flow requirement is included for the eastern Marshes (measured at Gum Cowal). For large overbank/wetland flows no specific eastern Marshes flow requirement it stated as it is assumed the larger flow volume will provide wetting to all three Marshes planning units, including the eastern Marshes.

³¹ Refer to Glossary for definitions of terms and explanatory text for EWRs

³² Volume required will vary between years depending on antecedent conditions

³³ Only flow on days with 400ML/day or above are counted towards the 8,000 ML total. Flow does not have to happen on consecutive days but is to happen within 40 days

Flow category and EWR code ³¹	Flow volume ³¹		Duration (retention of standing water) ³¹	Frequency (LTA frequency) ³¹	Maximum inter-event period ³¹
Overbank/ Wetland flow OB/WL Large ³⁴ *	440,000 ML within 150 days at combined River & Marebone Break gauges downstream of Marebone ³²	Anytime (ideally Aug–Mar)	3 months	2–3 years in 10 (25% of years)	5 years (up to 10 years for outer coolibah/black box areas)


³⁴ Grey shading (and * in 1st column of row) denotes that flows of this size are unable to be delivered with discretionary environmental water (although some water can be delivered to extend events). Flows of this size are dependent on natural events but may be impacted by water policy, including floodplain harvesting and flood mitigation zone management.

2.5.2 Southern Macquarie Marshes

The southern Marshes includes the Mole Marsh, Monkeygar Swamp, Southern Macquarie Marshes Nature Reserve, Monkey Swamp, Buckiinguy Swamp, Harper's Creek, Mundooie Floodplain, Pillicawarrina Floodplain (South), the 'Old Macquarie River' and the Marebone area.

The southern Marshes contains extensive reedbeds, water couch meadows, mixed marsh wetland, river red gum woodlands, lignum and open-water lagoons that support important colonial nesting waterbird breeding sites and feeding habitat. The Macquarie River, Bulgeraga Creek and Monkeygar Creek provide important riparian habitats between Marebone Weir and the northern Marshes.

The southern Marshes is upstream of the northern Marshes and acts as a natural sediment filter and buffer zone. The southern area of the Macquarie Marshes has undergone, and continues to undergo, significant channel changes and associated degradation of floodplain wetlands due to sediment accumulation and river regulation (OEH, 2010).

Map of Southern Macquarie Marshes PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Macquarie River @ Oxley Station (421022), Macquarie River @ D/S Marebone Weir (421090) and Bulgeraga Creek @ Bifurcation (421145).

Named priority environmental assets

Macquarie River channel & floodplain, Buckiinguy Swamp, Harpers Creek, Monkey Swamp, Old Macquarie River Channel and Floodplains, Southern Macquarie Marshes Nature Reserve, South Marsh Reedbed, Monkeygar Creek, Monkeygar Swamp, Stinky Hollow, Willancorah Swamp, Mole Marsh, U-Block, Pillicawarrina Floodplain (South), Mundooie Floodplain, Bulgeraga Creek Channel, Oxley Break, Government Channel, Milmiland Creek

Key ecological values

CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling.

	Australian smelt X + Y	Murray cod (V) X + Y		
	bony herring (V) ^{X + Y} carp gudgeon ^{X + Y}	Murray–Darling rainbowfish ^{X + Y} olive perchlet ^Y		
Native fish	eel tailed catfish (E) ^Y	silver perch (V) ^Y		
	flat-headed gudgeon ^x	spangled perch X + Y		
	golden perch X + Y	un-specked hardyhead ^Y		
Waterbirds	66 species recorded, including: Australasian bittern (E), Australian painted snipe (E), black-necked stork (E), blue-billed duck (V), brolga (V), Caspian tern (C,J), common greenshank (C,J,R), common sandpiper (C,J,R), cotton pygmy goose (E), curlew sandpiper (CE; C,J,R), freckled duck (V), Latham's snipe (C,J,R), magpie goose (V), marsh sandpiper (C,J,R), red-necked stint (C,J,R) & sharp-tailed sandpiper (C,J,R)			
Native vegetation	45,771 ha of water-dependent native veg gum (10,671 ha), coolibah (1814 ha), bla woody wetland vegetation (10,251 ha)	etation communities, including: river red ck box (1113 ha), lignum (2088 ha) & non-		
Pedistered	Carved trees, ceremonial ring, scarred tre	ees.		
Registered water-dependent cultural assets	It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered			

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring (V), carp gudgeon, flat-headed gudgeon, Murray–Darling rainbowfish & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch, spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish (E), Murray cod (V)

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch, Murray cod (V)

Relevant management rules for unregulated sections and recommended management strategies

See above for whole of Marshes (Section 2.5.1)

LTWP EWRs

See above for whole of Marshes (Section 2.5.1)

2.5.3 Northern Macquarie Marshes

The northern Marshes includes the Bora Channel, Ginghet Creek, River Paddock, Pillicawarrina Floodplain, Zoo Paddock, Louden's Lagoon, Hunt's Woodland, Duck Swamp, North Marsh Reedbed, Mullin's Swamp, the confluence of Monkeygar and Bulgeraga creeks, the Macquarie River and the Macquarie Marshes Nature Reserve (North).

The northern Marshes contains large areas of river red gum woodlands, lignum, reedbeds and water couch meadows that support important colonial nesting waterbird breeding sites and feeding habitat for . The northern Marshes also includes the northern section of the Macquarie Marshes Nature Reserve, which is part of the Macquarie Marshes Ramsar site (OEH, 2010).

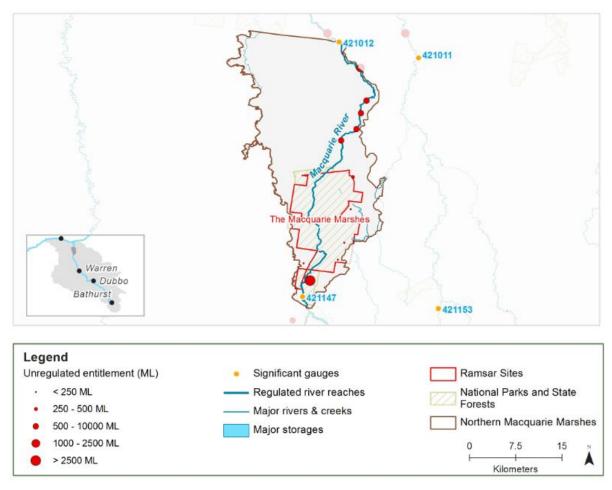


Figure 7

Map of Northern Macquarie Marshes PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Macquarie River @ Carinda (Bells Bridge) (421012) And Macquarie River @ Pillicawarrina (421147).

Named priority environmental assets					
Floodplain (North),	Macquarie River channel & wetlands, Macquarie Marshes Nature Reserve, Pillicawarrina Floodplain (North), North Marsh reedbed, The Bora Creek System, Ginghet Creek, Lower Macquarie Lagoons, Duck Swamp, Hunt's Woodland, Zoo Paddock				
	ered, E = Endangered, V = Vulnerable, C g unit via catch records and or Australiar	= CAMBA, J = JAMBA, R = ROKAMBA, X = species n Museum Records where they exist, Y = species expected			
Native fish	Australian smelt $X + Y$ bony herring $X + Y$ carp gudgeon $X + Y$ golden perch $X + Y$ Hyrtl's tandan	Murray cod (V) ^Y Murray–Darling rainbowfish ^Y olive perchlet ^Y silver perch (V) ^Y spangled perch ^{X + Y}			
Waterbirds	70 species recorded, including: Australasian bittern (E), Australian painted snipe (E), bar-tailed godwit (C,J,R), bar-tailed godwit (V,C,J,R), black-necked stork (E), blue-billed duck (V), brolga (V), Caspian tern (C,J), common greenshank (C,J,R), common sandpiper (C,J,R), curlew sandpiper (CE; C,J,R), freckled duck (V), gull-billed tern (C), Latham's snipe (C,J,R), magpie goose (V), marsh sandpiper (C,J,R), sharp-tailed sandpiper (C,J,R) & wood sandpiper (C,J,R)				
Native vegetation	43,281 ha of water-dependent native vegetation communities, including: river red gum (13,648 ha), coolibah (8651 ha), black box (3310 ha), lignum (4732 ha) & non-woody wetland vegetation (7181 ha)				
Registered water- dependent cultural assets	Registered water- ependent Modified trees. It is acknowledged that other Aboriginal values such as sites, objects, landacapea, resources & beliefs that are important to Aboriginal papels as				

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp-gudgeon, Murray–Darling rainbowfish

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, Hyrtl's tandan, spangled perch & silver perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod

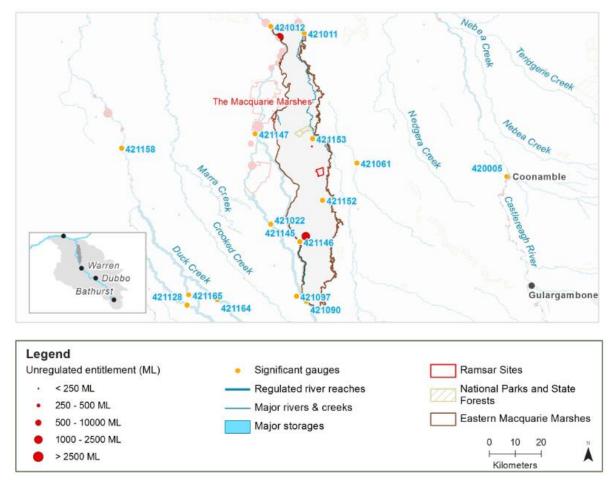
NF6 A 25% increase in abundance of mature (harvestable sized) golden perch, Murray cod

NF9 Increase the prevalence and/or expand the population of key moderate to long-lived flow pulse specialists native fish species into new areas (within historical range): Hyrtl's tandan

Relevant management rules for unregulated sections and recommended management strategies

See above for whole of Marshes (Section 2.5.1)

LTWP EWRs


See above for whole of Marshes (Section 2.5.1)

2.5.4 Eastern Macquarie Marshes

The eastern Marsh includes Gum Cowal–Terrigal Creek, Lower Marthaguy Creek Floodplains, Long Plain Cowal and Dusty Swamp, Terrigal Creek Wetlands, Wilgara Wetland, Gum Cowal Lagoons and Floodplain, Gradgery Floodplain and the Jungle & Back Swamp.

The eastern Marsh has open water lagoons, river red gum woodlands, lignum and water couch meadows that support important colonial nesting waterbird breeding sites and feeding habitat. The eastern Marsh includes the Wilgara Wetlands portion of the Macquarie Marshes Ramsar site.

Parts of the area, such as the Long Plain Cowal and Dusty Swamp are inundated only in medium to large floods that are beyond the scope of most managed environmental flows (under current conditions). Marthaguy Creek is unregulated, flowing independently from the east, joining Terrigal Creek upstream of the "Ninia" section of the Macquarie Marshes Nature Reserve. Terrigal Creek flows north through the "Wilgara" Ramsar site before joining Marthaguy Creek.

Map of Eastern Macquarie Marshes PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Marebone Break @ D/S Marebone Regulator (421088), Gum Cowal @ Bifurcation (421146), Gum Cowal @ Oxley (421152), Terrigal Creek @ U/S Marthaguy Creek (421153), Marthaguy Creek @ Carinda (421011).

Named priority environmental assets

Gum Cowal lagoons & floodplains, Gum Cowal Terrigal, Terrigal Creek and wetlands, Wilgara Wetland, Long Plain Cowal, Dusty Swamp/Cowal, Dusty Creek, Back swamp, Marthaguy Creek, Merri Merri creek

Key ecological values CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling.					
Native fish	Australian smelt $^{X+Y}$ bony herring $^{X+Y}$ carp-gudgeon $^{X+Y}$ golden perch $^{X+Y}$ Hyrtl's tandan Murray cod (V) $^{X+Y}$	Murray–Darling rainbowfish ^{X + Y} olive perchlet ^{X + Y} spangled perch ^{X + Y} silver perch (V) ^{X + Y} un-specked hardyhead ^{X + Y}			
Waterbirds	66 species recorded, including: Australasian bittern (E), Australian painted snipe (E), black-necked stork (E), blue-billed duck (V), brolga (V), Caspian tern (C,J), common greenshank (C,J,R), common sandpiper (C,J,R), curlew sandpiper (CE; C,J,R), freckled duck (V), gull-billed tern (C), Latham's snipe (C,J,R), magpie goose (V), marsh sandpiper (C,J,R) sharp-tailed sandpiper (C,J,R) & wood sandpiper (C,J,R)				
Native vegetation		vegetation communities, including: river red a), black box (17,678 ha), lignum (15,446 (1452 ha)			
Registered water- dependent cultural assets	Resource & gathering, scarred trees It is acknowledged that other Aborigin landscapes, resources & beliefs that a their continuing culture may be prese	nal values such as sites, objects, are important to Aboriginal people as part of			

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp-gudgeon, Murray–Darling rainbowfish & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, Hyrtl's tandan, spangled perch & silver perch (V)

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod (V)

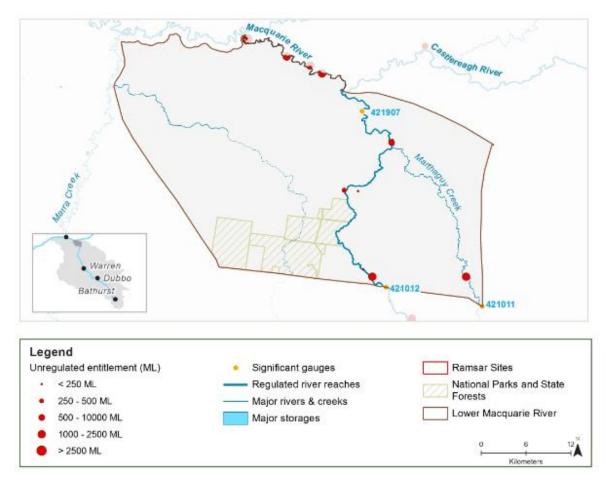
NF6 A 25% increase in abundance of mature (harvestable sized): Murray cod (V) & golden perch

NF9 Increase the prevalence and/or expand the population of key moderate to long-lived flow pulse specialists native fish species into new areas (within historical range): Hyrtl's tandan

Relevant management rules for unregulated sections and recommended management strategies

See above for whole of Marshes (Section 2.5.1)

LTWP EWRs


See above for whole of Marshes (Section 2.5.1)

2.6 Lower Macquarie

The Lower Macquarie River, as defined locally, commences downstream of the northern Macquarie Marshes where the river channel re-forms. It extends approximately 80km to the confluence with the Barwon River. This PU commences at the Carinda (Bells Bridge) gauge and extends downstream to the Barwon River.

Flows into the lower Macquarie generally come via the northern Marshes, either from the Bora system, northern Marshes reedbed or the North Marsh Bypass Channel – sometimes a combination of all three. The lower Macquarie River is joined by the lower Marthaguy Creek and Castlereagh River just upstream of its confluence with the Barwon River (Torrible et. al, 2011).

The Lower Macquarie Planning Unit includes the lower sections of the lower Macquarie River water source area and the Marthaguy Creek water source area.

Map of Lower Macquarie PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Macquarie River @ Brewon Bridge (421907), Marthaguy Creek @ Carinda (421011) and Macquarie River @ Carinda (Bells Bridge) (421012).

Named priority environmental assets

- Lower Macquarie River channel & floodplains
- Mullins Swamp
- Ginghet Creek
- Briery Anabranch
- Lower Marthaguy Creek
- Floodplain Wetlands

Key ecological values

CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling.

Native fish	Australian smelt ^Y bony herring ^{X + Y} carp gudgeon ^{X + Y} golden perch ^{X + Y} Hyrtl's tandan	Murray cod (V) ^{X + Y} Murray-Darling rainbowfish ^Y olive perchlet ^Y silver perch (V) ^Y spangled perch ^{X + Y}	
Waterbirds	35 species recorded, including: freckled duck (V)		
Native vegetation	54,772 ha of water-dependent native vegetation communities, including: river red gum (325 ha), coolibah (17,672 ha), black box (17,672 ha), lignum (580 ha) & non-woody wetland vegetation (2436 ha)		
Registered water- dependent cultural assets	Ceremony & dreaming & scarred trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as par of their continuing culture may be present but not registered		

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, Murray-Darling rainbowfish

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, Hyrtl's tandan, silver perch & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch, Murray cod

NF7 Increase the prevalence and/or expand the population of key short to moderate-lived floodplain specialist native fish species into new areas (within historical range): olive perchlet

NF9 Increase the prevalence and/or expand the population of key moderate to long-lived flow pulse specialists native fish species into new areas (within historical range): silver perch, Hyrtl's tandan

Hydrology (DPIE Water, in prep)

The Lower Macquarie Water Source Area has experienced a moderate to high degree of hydrological alteration. As assessed by the Macquarie-Castlereagh WRPA Risk Assessment, cease-to-flow, low flow & baseflows, freshes and overbanks have all decreased compared to modelled near-natural conditions.

The Lower Macquarie water source area (which also includes areas of the Macquarie Marshes PUs) has 51,888 ML of entitlement. The section covered by this PU (downstream of Bells Bridge) contains 10 licences totalling just over 19,000 ML of entitlements, with one of these licences (of around 1,600 ML) being a 'special high flow' entitlement requiring 245 ML/day at the Bells Bridge (Carinda) gauge before take is permitted. The licences are spread along the length of the river in this PU, with one licence within 1 km of the junction with the Barwon.

Hydrological	CTF	Low flow & baseflow	Freshes	Overbanks
alteration See Table 1 for key	Н-	M-	M-	H-/M-
Relevant rules from WSP	the Gum Cowal man management zone of Macquarie River @ additional high flow) Trade WITHIN wate No pool drawdown For pump sites not w For licences traded	ource: permitted in from the hagement zone & the Low only, subject to the higher Bells Bridge (Carinda). Tra- licences not permitted. r source: Permitted, subject within a natural pool, cease in pumping is not permitted	er Macquarie Rive access rule of 501 ades in of unregul ect to assessment e to pump rule wh	er Upstream ML/d on ated river (special en no visible flow.
Decemmendes	Bridge (Carinda) ga	<u> </u>		

Recommended management strategies

- Consider adding specific commence-to-pump rules in the WSP within five years to:
 - o better protect low flows & baseflows
 - o investigate increasing commence-to-pump to 65 ML/d at Bells Bridge (Carinda) (421012).
- Consider rostering landholder water access during low flow months
- Consider implementing total &/or individual daily extraction limits (IDELS & TDELS)
- Consider implementing a first flush rule to ensure periods between small freshes are not excessively prolonged
- Consider targeted water access licence purchases from willing sellers (Note licence purchase may not reduce extraction of events in dry periods water normally taken by the purchased licence may be taken by downstream licences. In such cases purchases may need to target the most downstream licences)
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Protect water for the environment that originates from held water entitlements & the EWA.
- Maintain existing rules in the WSP to maintain priority environmental assets
- Consider restrictions to take in water sources bordering the Barwon River when embargoes on take exist in the Barwon River
- Monitor for changes in water demand & review access rules if usage increases or if the pattern
 of use changes
- Improve the gauging network to better indicate flow distribution and take, particularly for the gauging of flow below the most downstream extraction point.

Flow category EWR code ³⁵	/ and	Flow volume ³⁵	Timing ³⁵	Duration ³⁵		Maximum inter- event period ³⁵	Additional requirements and comments ³⁵
Cease-to-flow	CTF		In line with natural. Typically occurs Nov–June	<u>Maximum</u> duration: In moderate years persist for 27 days & do not persist for more than 138 days ³⁶	Should not occur more than 69% of years ³⁶		
Very-low- flow ^{37#}	VLF	Evidence of flow to confluence with Barwon, nominally >10 ML/d at Bells Bridge ³⁸	Anytime	In moderate years, 267 days per year. In very dry years, at least 34 days per year ³⁶	Days with >10 ML/day of flow occurred in at least 96% of years pre 1966 ³⁶		No fish refuge pools greater than 2m deep identified; however, there would still be benefits in protecting this flow for other objectives within this PU.

Table 9 LTWP EWRs for the Lower Macquarie River as measured at Bells Bridge (Carinda) (421012) unless otherwise specified

³⁵ Refer to Glossary for definitions of terms and explanatory text for EWRs

³⁶ Based on 1938–1966 observations, except for CTF, which is likely to have been heavily impacted by development prior to 1966. CTF is based on 1984–2017 observations. Maximum durations (for CTF) and maximum inter-event periods and 'very dry year' durations (for other flows) are based on 95th percentiles. BF2 'very dry year' duration based on the 25th percentile as this flow is only required every 5–10 years. Duration for 'moderate years' is based on the number of days of flow in the median year. Maximum interevent period for VLF and BF1 have been rounded from 492 days (for VLF) and 432 days (for BF1) to avoid the counterintuitive result caused by the greater number of smaller breaks in the BF1 results calculating a lower number for it.

³⁷ Orange shading (and # in the 1st column of row) denotes that these flows are not a priority for delivery of discretionary water as there are no identified fish refuge pools in this planning unit. However, the LTWP acknowledges the importance of protecting these flows for other ecological objectives (e.g. Native vegetation NV1, NV3; Ecosystem functions EF1, EF2, EF6 etc.)

³⁸ Actual flow required at Bells Bridge to provide trickle flow to the Barwon will vary depending on antecedent and seasonal conditions. Flow of 10 ML/day at Bells Bridge used to provide initial analysis for historical frequencies and durations. Flow at Brewon gauge (421907), which is closer to the confluence with the Barwon will assist in determining if flow is likely to reach the Barwon.

Flow category EWR code ³⁵	y and	Flow volume ³⁵	Timing ³⁵	Duration ³⁵	Frequency (LTA frequency) ³⁵	Maximum inter- event period ³⁵	Additional requirements and comments ³⁵
	BF1	>100 ML/d	Anytime	In moderate years, 208 days per year. In very dry years, at least 13 days per year ³⁹	Days with >100 ML/day of flow occurred in at least 96% of years pre 1966 ³⁶	450 days ³⁶	
Baseflow ³⁹	BF2	>100 ML/d	Sep–Mar	In moderate years, 128 days per season. In very dry years, at least 42 days per season ³⁹	5–10 years in 10 (75%	2 years	
	BF3	N/A	N/A No fish refuge p	N/A No fish refuge pools greater than 2 metres deep identified in this planning unit			
De-stratifying flow	DSF	N/A	N/A No fish refuge p	N/A No fish refuge pools greater than 2 metres deep identified in this planning unit			
	SF1	>140 ML/d	Anytime (ideally Oct–Apr)	10 days	Annually (10 years in 10)	1 year	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest
Small fresh	SF2	140–700 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	2 years	5% of rates of fall) was 15% per day for 'pre- development' observed flows from 1938–1960 (e.g. 140ML-120ML-100ML)

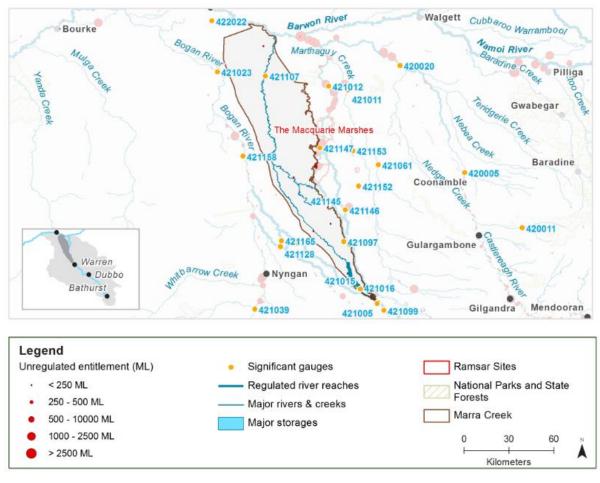
³⁹ Baseflows in this planning unit have markedly reduced in frequency. Due to limited availability of water the targets are not currently likely to be achieved. However, they remain to highlight the degree of impact on flows in this reach, which is important for fish connectivity between the Barwon and Macquarie systems.

Flow category EWR code ³⁵	r and	Flow volume ³⁵	Timing ³⁵	Duration ³⁵	Frequency (LTA frequency) ³⁵	Maximum inter- event period ³⁵	Additional requirements and comments ³⁵
	SF3	>140 ML/d	Anytime (ideally July–Sep for initial flow & Oct–Apr for subsequent flow)	28 days	5 years in 10 (50% of years)	4 years	For movement of fish recruits from Barwon River
	LF1	>700 ML/d	Anytime (ideally Jul–Sep)	5 days	5–10 years in 10 (75% of years)	2 years	Maintain the maximum rate of event recession within
Large fresh ^{40*}	LF2	>700 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years	natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 10% per day for 'pre- development' observed flows from 1938–1960 (e.g. 700ML-630ML-570ML).
	OB/ WS1	Not applicat	ble. For core wetland	areas, which are not a f	eature of this PU		
Overbank/ Wetland flow Small ^{40*}	OB/ WS2	>1,900 ML/d	Oct–Apr (but for this northernmost river section, anytime is considered acceptable)	10 days	5–10 years in 10 (75% of years)	4 years	This flow is not as high a priority as in other PUs because there are fewer off- channel wetlands that would provide lasting habitat

⁴⁰ Grey shading (and * in 1st column of row) denotes that flows of this size are not able to be delivered with discretionary environmental water (although deliveries to the Marshes assist in achieving these flows). Flows of this size are dependent on natural events but may be impacted by water policy including floodplain harvesting and flood mitigation zone management.

Flow category EWR code ³⁵	/ and	Flow volume ³⁵	Timing ³⁵	Duration ³⁵	Frequency (LTA frequency) ³⁵	Maximum inter- event period ³⁵	Additional requirements and comments ³⁵
	OB/ WS3	>1,900 ML/d	Anytime (ideally Sep–Feb)	5 days (the median duration of flows is greater than 5 days. 5 days is also used for riparian river red gum requirements)	2–3 years in 10 (25% of years)	5 years	For both fish dispersal/condition & riparian river red gum
	OB/ WS4	>1,900 ML/d	Anytime (ideally Aug–Mar)	Persistence of water 3 months. Flow of 5 days estimated as required to fill depressions & soil profile.	3–10 years in 10 (65% of years)	5 years	Lower frequency required in this PU because the main non-woody vegetation is rats tail couch.
Overbank/ Wetland flow Medium ⁴¹ *	OB/ WM	Not determined	Anytime (ideally Aug–Mar)	Persistence of water. 3 months for wetland depressions.	5 years in 10 (50% of years)	5 years	
Overbank/ Wetland flow Large ^{41 *}	OB/ WL	Not determined	Anytime (ideally Aug –Mar)	Persistence of water 3 months for wetland depressions.	2–3 years in 10 (25% of years)	5–10 years	

⁴¹ Grey shading (and * in 1st column of row) denotes that flows of this size are not able to be delivered with discretionary environmental water (although deliveries to the Marshes assist in achieving these flows). Flows of this size are dependent on natural events but may be impacted by water policy including floodplain harvesting and flood mitigation zone management.


2.7 Marra Creek

The Marra Creek PU encompasses Marra Creek and Crooked Creek (upper and Lower). Marra Creek is an unregulated stream over 250 km long and reaches the Barwon River upstream of Brewarrina. Marra Creek receives water from three sources:

- local rainfall
- the Marra cutting (a constructed channel from the Marebone Weir pool to Marra Creek with a channel capacity of 250 ML/d)
- the creek's natural off-take channel, which starts upstream of Marebone Weir and has a commence-to-flow of about 3,200 ML/d at Marebone Weir (combined gauged flows).

Under the *Macquarie Cudgegong Water Regulated Sharing Plan*, Marra Creek can receive an annual stock and domestic replenishment flow of up to 15,000 ML (Torrible et al. 2011).

Crooked Creek commences as an offtake of Gunningbar Creek. Flows are controlled by a regulator and can eventually reach Marra Creek. Regulated water supplies are provided to the upper Crooked Creek for limited irrigation and stock and domestic use as far as the "Mumblebone" Weir. Downstream of Mumblebone" Weir the lower Crooked Creek is unregulated (Torrible et al. 2011).

Map of Marra Creek PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Marra Creek @ Billybingbone Bridge (421107), Marra Creek @ Carinda Road (421097) and Crooked Creek @ Profile (421016)

Marra Creek channel & riparian zone, Marra Creek Flooplain Wetlands, Crooked Creek, Bulla Bulla Creek, Milmiland Creek, Middle Creek, Sandy Cowal, The Big Lagoon, Womby Cowa, Briery Creek, Tarrion Creek, Burlong Creek, Bread and Cheese Creek, McClures Creek

Key ecological values CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling.

Native fish	Australian smelt $^{X+Y}$ bony herring $^{X+Y}$ carp-gudgeon $^{X+Y}$ eel-tailed catfish (E) $^{X+Y}$ flat-headed gudgeon $^{X+Y}$ golden perch Y	Murray cod (V) ^Y Murray–Darling rainbowfish ^{X + Y} olive perchlet ^Y silver perch (V) ^Y spangled perch ^{X + Y} un-specked hardyhead ^Y	
Waterbirds	55 species recorded, including: Australasian bittern (E), Australian painted snipe (E), bar-tailed godwit (C,J,R), black-necked stork (E), blue-billed duck (V), brolga (V), common greenshank (C,J,R), Latham's snipe (C,J,R), magpie goose (V), marsh sandpiper (C,J,R) & sharp-tailed sandpiper (C,J,R)		
Native vegetation	202,430 ha of water-dependent native vegetation communities, including: river red gum (15,652 ha), coolibah (20,130 ha), black box (26,481 ha), black box/coolibah (11,551 ha), lignum (1145 ha) & non-woody wetland vegetation (7079 ha)		
Registered water-dependent cultural assets	Carved trees & scarred trees. It is acknowledged that other Aborigina landscapes, resources & beliefs that a part of their continuing culture may be	re important to Aboriginal people as	

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp-gudgeon, flat-headed gudgeon, Murray–Darling rainbowfish, & unspecked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch, spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish, Murray cod

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

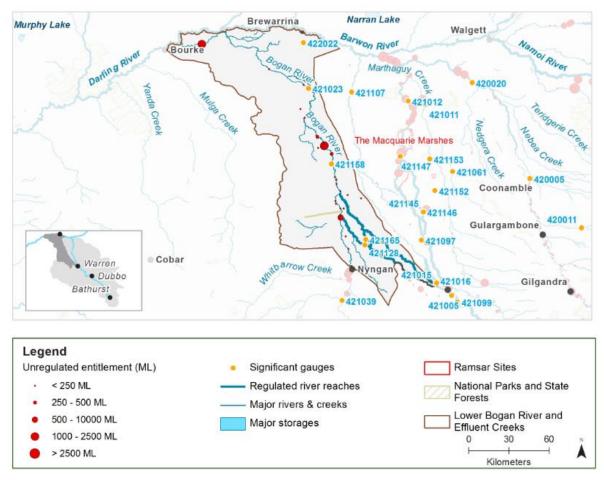
Hydrology (DPIE Water, in prep)

The Marra Creek Water Source Area has experienced a moderate to high degree of hydrological alteration. As assessed by the Macquarie-Castlereagh WRPA Risk Assessment, low flow & baseflows and freshes have increased compared to modelled near-natural conditions. Overbank events have experienced a moderate to high decrease compared to modelled near-natural conditions. There are 5 water access licences with entitlements of >250 ML distributed throughout the water source. The total volume of entitlements for the water source is 311 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks	
See Table 1 for key	L+	H+	H+	H-/M-	
Relevant rules from WSP	Trade INTO water source: Not permitted Trade WITHIN water source: Permitted, subject to assessment No pool drawdown For pump sites not within a natural pool, cease to pump rule when no visible flow.				
Recommended management strategies					

- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Protect water for the environment that originates from held water entitlements & the EWA.
- Maintain existing rules in the WSP to maintain priority environmental assets
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

Further work


 Sections 4.6 and 7.2 in Part A of the LTWP identify that further work would be beneficial to improve flow and asset information in Marra Creek. They also identified the need for further work determining the feasibility of delivering water to the Talga Wetland/overflow of lower Crooked Creek

2.8 Lower Bogan River

The Lower Bogan commences directly downstream of the Nyngan Weir pool and flows north to reach the Barwon River downstream of Brewarrina. The Lower Bogan is unregulated but receives regulated flow from the Macquarie River at Nyngan via the Albert Priest channel and can also receive flows via the regulated Gunningbar and Duck Creeks. The Nyngan weir pool provides water supply to Nyngan and Cobar, and some water supply for local irrigation. The Lower Bogan provides water supply to a number of grazing and irrigation businesses and residences along the section, and to the village of Gongolgon and Brewarrina Correction Facility.

Gunningbar Creek is a distributary creek which flows to the northwest and is provided regulated water from the Warren Weir pool (a regulator controls creek flows from the weir pool). It joins the Bogan River downstream of Nyngan. Gunningbar Creek is regulated and used to provide regulated water supplies for irrigation, mining and stock and domestic use. A stock and domestic replenishment of up to 1,000 ML is provided between Nyngan and the Gunningbar junction and 15,000 ML is provided from Gunningbar Creek for the lower Bogan to the Barwon River junction (Barma, 2011). The main operational constraint for regulated water delivery is a 150-200 ML/d limit at Fairview Dam on Gunningbar Creek. Some of the flow above this level escapes into Bena Billa Creek and then into Duck Creek (Barma, 2011). River regulation has substantially altered the flow regime of Gunningbar Creek as it no longer dries out as it would have under pre-development conditions (Torrible et al. 2011).

Duck Creek is regulated for limited irrigation and stock and domestic use to its junction with the Bogan River downstream of Nyngan and the Gunningbar junction. Duck Creek is also connected to the regulated Upper Crooked Creek and to Bena Billa Creek. Duck Creek now receives continuous low flows which have resulted in significant degradation of its natural ecological values (Barma, 2011), although it does now provide refugia for native fish species.

Figure 11 Map of Lower Bogan River PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Duck Creek @ Offtake (421015), Gunningbar Creek @ Box Culverts (421128), Beni Billa Creek @ Downstream Canonba Road (421165), Bogan River @ Monkey Bridge (421158), Bogan River @ Gongolgon (421023)

Named priority environmental assets

Bogan River channel & floodplain, Gunningbar Creek, Rigleys Cowal, Doyles Creek, Box Cowal, Moonagee Cowal, Belar Creek, Yongee Creek, Merungle Creek, Goldbiddie Cowal, Bugwah Cowal, Turners Creek, Yangunyah Cowal, Keerugulla Lake, Tarrion Creek, Kellys Cowal, Piano Creek, Little Bogan River, Bena Billa Creek, Nyangi Bogan Cowal, Duck Creek, Goldbiddie Cowal, Boomi Creek, The Duckholes, Finneys Cowal, Floodplain wetlands

Key ecological values

CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling.

	Australian smelt X + Y	Hyrtl's tandan ^{X + Y}
	bony herring X + Y	Murray cod (V) ^{X + Y}
	carp-gudgeon X + Y	Murray–Darling rainbowfish X + Y
Native fish	flat-headed gudgeon ^x	olive perchlet X + Y
	flathead galaxias (CE) ^Y	spangled perch X + Y
	eel-tailed catfish (E) X + Y	silver perch (V) $^{ m Y}$
	golden perch X + Y	un-specked hardyhead ^{X + Y}

Waterbirds	53 species recorded, including: Australasian bittern (E), Australian painted snipe (E), black-tailed godwit (V), blue-billed duck (V), brolga (V), common greenshank (C,J,R), Latham's snipe (C,J,R), marsh sandpiper (C,J,R) & sharp-tailed sandpiper (C,J,R)
Native vegetation	233,541 ha of water-dependent native vegetation communities, including: river red gum (7664 ha), coolibah (17,185 ha), black box (47,746 ha), black box/coolibah (21,107 ha), lignum (5068 ha) & non-woody wetland vegetation (10,883 ha)
Registered water- dependent cultural assets	Camp sites & scarred trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, flat-headed gudgeon, bony herring, Murray–Darling rainbowfish, un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet & flathead galaxias

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch, Hyrtl's tandan & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish & Murray cod

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

NF7 Increase the prevalence &/or expand the population of key moderate to long-lived riverine specialists into new areas (within historical range): olive perchlet

NF9 Increase the prevalence &/or expand the population of key moderate to long-lived flow pulse specialists into new areas (within historical range): Hyrtl's tandan

Hydrology (DPIE Water, in prep)

The Lower Bogan Water Source Area has experienced a moderate to high degree of hydrological alteration. As assessed by the Macquarie-Castlereagh WRPA Risk Assessment, cease-to-flow events, freshes and overbank events have all decreased compared to near-natural conditions. Low flow and baseflow events have experienced a high increase compared to modelled near-natural conditions. There are 27 water access licences within the water source (>250 ML X 20, 250-500 ML X 3, 1000-2500 ML X 2 and > 2500 ML X 2). The total volume of unregulated entitlements for the water source is 41,374 ML, 39,029 ML of which is in four 'special additional high flow' licences. These require flows of 160 ML/day at Gongolgon Weir before take is allowed.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
(Bogan at Gongolgon (421023)) See Table 1 for key	H-	H+	M-	M-/H-

Trade INTO water source: permitted from the Upper Bogan River & Bulbodney

Relevant rules
from WSPGrahway Creek water sources. Trades in unregulated river (special additional
high flow) licences are not permitted into this water sourceTrade WITHIN water source: Permitted, subject to assessment
No pool drawdown
For pump sites not within a natural pool, cease to pump rule when no visible
flow.

Recommended management strategies

- Consider rostering landholder water access during low flow months.
- Consider implementing total &/or individual daily extraction limits (IDELS & TDELS)
- Improve the gauging network to better indicate flow distribution and take, particularly for the gauging of flow below the most downstream extraction point.
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Consider implementing a first flush rule to ensure periods between small freshes are not excessively prolonged
- Protect water for the environment that originates from held water entitlements & the EWA.
- Maintain existing rules in the WSP to maintain priority environmental assets
- Consider restrictions to take in water sources bordering the Barwon River when embargoes on take exist in the Barwon River
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

Further work

Sections 4.6 and 7.2 in Part A of the LTWP identify a number of issues with the distributary (effluent) creeks in this PU. These relate to:

- investigating possible ways to improve flow variability in some distributary creeks
- improving flow and asset information in the distributary (effluent) creeks.

Further work to determine the importance of non-woody wetlands near Doyle's Creek would also be beneficial. If deemed of conservation value, further work would then be required to determine the flow regime required and the feasibility of protecting flows or providing flows to the area.

Table 10LTWP EWRs for the Lower Bogan River at Gongolgon Bridge (421023).

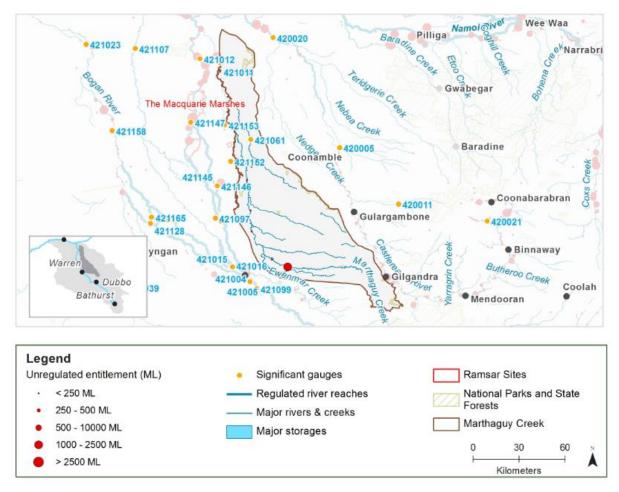
As the Lower Bogan River at Gongolgon Bridge is unregulated42, the values provide an indication of the flow sizes and frequencies which should ideally be protected. All information should be considered preliminary based on the limited data available (modelled data is provisional and gauge information is from weirs – making determination of baseflow levels difficult)

Flow category EWR code ⁴³	and	Flow volume ⁴³	Timing ⁴³	Duration ⁴³	Frequency (LTA frequency) ⁴³	Maximum inter- event period ⁴³	Additional requirements and comments ⁴³
Cease-to-flow	CTF	0 ML/d					Not analysed due to poor data set and difficulty in analysing low flows
Very low flow	VLF	Not determined	Anytime				Not analysed due to poor data set and difficulty in analysing low flows
-	BF1	>100 ML/d (provisional estimate)	Anytime				Not analysed due to poor data set and difficulty in analysing low flows
	BF2	>100 ML/d (provisional estimate)	Sep–Mar				Not analysed due to poor data set and difficulty in analysing low flows
	BF3	To be determined ⁴⁴	bottom layer is likely to develop to an extent that it could produce hypoxic conditions in the entire water column should subsequent mixing occur. Requirement more likely during beriods of extreme heat and low flow. This flow would also help reduce the risk of fish mortality due to extremely high water			As these flows are to maintain water quality, weir level management (where relevant), natural flows, operational water and non- discretionary environmental	

⁴² Regulated flows via Gunningbar Creek could contribute to smaller flows at Gongolgon Bridge, but due to delivery capacities and on-route 'loses' this may not often be practical or the most effective use of available water.

⁴³ Refer to Glossary for definitions of terms and explanatory text for EWRs

⁴⁴ Further work is required to confirm thresholds. See action on 'tools for preventing fish deaths due to stratification' in Table 22 of Part A.


Flow category EWR code ⁴³	/ and	Flow volume ⁴³	Timing ⁴³	Duration ⁴³	Frequency (LTA frequency) ⁴³	Maximum inter- event period ⁴³	Additional requirements and comments ⁴³
Destratifying flow	DSF	To be determined ⁴⁴	As required to destr bottom layer has de column when mixed	atify refuge pools during veloped and could prod . Requirement more like able 22 of Part A) is req	g periods of identified high r uce hypoxic conditions in th ely during periods of extrem juired to better identify risk p	isk where a hypoxic ne entire water e heat and low flow.	water should be used in the first instance before considering the use of discretionary environmental water. The DSF flow must be provided in a manner which considers potential impacts from turning over refuge pools and initial water temperature increases from flows travelling over hot, dry river beds. Consult NSW DPI- Fisheries on interim flow protocols and in developing detailed future requirements (see recommended further work, Table 22 of Part A).
	SF1	>400 ML/d	Anytime (ideally Oct–Apr)	10 days	Annually (10 years in 10)	1 year	Maintain the maximum rate of event recession within natural
Small fresh	SF2	400–1,500 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	2 years	-range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 30% per day for 'pre-development' observed flows from 1947–1960 (e.g. 400ML-280ML-200ML).
	SF3	>400 ML/d	Anytime (ideally July–Sep for initial flow & Oct–Apr for subsequent flow)	28 days	5 years in 10 (50% of years)	4 years	For movement of fish recruits from Barwon River
Large fresh	LF1	>1,500 ML/d	Anytime (ideally Jul–Sep)	5 days	5–10 years in 10 (75% of years)	2 years	Maintain the maximum rate of event recession within natural

Flow category EWR code ⁴³	and	Flow volume ⁴³	Timing ⁴³	Duration ⁴³	Frequency (LTA frequency) ⁴³	Maximum inter- event period ⁴³	Additional requirements and comments ⁴³
	LF2	>1,500 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years	range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 35% per day for 'pre-development' observed flows from 1947-1960 (e.g. 1500ML-975ML-635ML).
	OB/ WS1	Not applicable. T	his flow is for core w	etland areas, which are	not a feature of this PU		
Overbank/ Wetland flow Small	OB/ WS2	>4,500 ML/d	Oct–Apr (but for this northern river section, anytime is considered acceptable)	10 days	Ideally 4–10 years in 10 (70% of years), but this may only be achieved in wetter sequences- see 'additional information' column))	4 years	There are objectives to support the floodplain specialist native fish, the olive perchlet, in this planning unit. Analysis shows small overbanks of 10 days duration only occur in 37% of years (when assessed for pre-development observed flows as any time of year). Therefore, this species may only be supported in wetter sequences of years or in off- channel wetlands that are filled at below bankfull levels. Following dry sequences recruits may come from the Barwon, but this requires further research to be confirmed.
	OB/ WS3	>4,500 ML/d	Anytime (ideally Sep–Feb)	5 days (the median duration of flows is greater than 5 days. 5 days is also used for riparian river red gum requirements)	2–3 years in 10 (25% of years)	5 years	For both fish dispersal/condition & riparian river red gum

Flow category EWR code ⁴³	and	Flow volume ⁴³	Timing ⁴³				Additional requirements and comments ⁴³
	OB/ WS4	>4,500 ML/d	Vegetation mapping in the planning unit shows some areas of non-woody vegetation exist, particularly around Doyle's Creek and this is predominantly water couch. Further work on that creek system to determine the conservation value of the non-woody vegetation there would be beneficial. If considered of conservation value, then further work would be required to determine the viability of protecting or providing flows to it. In terms of the Lower Bogan system as a whole, because there is an absence of substantial areas of non-woody veg associated with main river channels and because of the relatively low frequency of overbanks, no planning unit wide flow for non-woody wetland vegetation is proposed.				
Overbank/ Wetland flow Medium	OB/ WM	Not determined	Anytime (ideally Aug–Mar)	Persistence of water. 3 months for wetland depressions.	5 years in 10 (50% of years)	5 years	
Overbank/ Wetland flow Large	OB/ WL	Not determined	Anytime (ideally Aug –Mar)	Persistence of water 3 months for wetland depressions.	2–3 years in 10 (25% of years)	5–10 years	

2.9 Marthaguy Creek

Marthaguy Creek has its source near Gilgandra and flows north. It is part of a complex of creeks that drain the area between the Castlereagh and Macquarie Rivers into the Macquarie Marshes complex. The lower section of this creek (below Terrigal Creek junction) can be affected by regulated environmental water deliveries via the streams of the eastern Macquarie Marshes.


```
Figure 12
```

Map of Marthaguy Creek PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Merri Merri Creek @ Quambone (421061), Marthaguy Creek @ Carinda (421011).

Named priority environmental assets						
	Marthaguy Creek channel & riparian zone, Merri Merri Creek, Back Creek, Little Merri Merri Creek, Bullagreen Creek, Wemabung Creek, Merrigal Creek, Boothaguy Creek, Quandong Cowal, Meryon Cowal					
(CE = Critically Endang recorded in this plannin	Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)					
Native fish	Australian smelt ^{X + Y} bony herring ^Y carp-gudgeon ^{X + Y} dwarf flat-headed gudgeon ^Y eel-tailed catfish (E) ^Y flat-headed gudgeon ^Y	golden perch ^x Hyrtl's Tandan Murray–Darling rainbowfish ^Y spangled perch ^{X + Y} un-specked hardyhead ^Y				
Waterbirds	48 species recorded, including: Australian painted snipe (E), black-necked stork (E), blue-billed duck (V), Brolga (V), Latham's snipe (C,J,R) & magpie goose (V)					
Native vegetation	185,361 ha of water-dependent native vegetation communities, including: river red gum (5032 ha), coolibah (12,067 ha), black box (34,889 ha), lignum (685 ha) & non-woody wetland vegetation (4390 ha)					
Registered water- dependent cultural assets	Carved trees & scarred trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.					

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, flat-headed gudgeon, dwarf flat-headed gudgeon, bony herring, Murray–Darling rainbowfish & un-specked hardyhead

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, Hyrtl's tandan & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch

NF9 Increase the prevalence &/or expand the population of key moderate to long-lived flow pulse specialists into new areas (within historical range): Hyrtl's tandan

Hydrology (DPIE Water, in prep)					
80 th percentile: 0 ML/d	50 th percentile: 0 ML/d	20 th percentile: 5 ML/d			
1.5 ARI : 1400 ML/d	2.5 ARI : 2800 ML/d	5 ARI : 5100 ML/d			

The Marthaguy Creek Water Source Area has experienced a moderate to high degree of hydrological alteration. As assessed by the Macquarie-Castlereagh WRPA Risk Assessment, cease-to-flow events have increased moderately, and overbank events have decreased moderately compared to modelled near-natural conditions. Although freshes & baseflows appear to have increased, this is most likely due to inflows at the end of the system from regulated deliveries into the Gum Cowal-Terrigal system. Flows into Marthaguy Creek above the junction of the Terrigal are likely to have reduced.

There are 6 water access licences within the water source, 4 with entitlements of >250 ML, and 2 of 1000-2500 ML. The total volume of entitlements for the water source is 4342 ML.

Hydrological CT	TF	Low flow & baseflow	Freshes	Overbanks
alteration See Table 1 for M- key	+	H+	H+	M-/L-

Relevant rules from	Trade INTO water source: permitted only from Gum Cowal management zone & Lower Macquarie downstream management zone within the Lower Macquarie River water source.
WSP	Trade WITHIN water source: Permitted, subject to assessment
WOF	No pool drawdown
	For pump sites not within a natural pool, cease to pump when no visible flow.

Recommended management strategies

- Consider adding specific commence-to-pump rules in the WSP within five years to:
 - o reduce the length of CTF periods
 - investigate increasing commence-to-pump to 20 ML/d on the Marthaguy at Carinda (421012).
- Consider implementing a first flush rule to ensure CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents.
 - This will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Protect water for the environment that originates from held water entitlements & the EWA.
- Maintain existing rules in the WSP to maintain priority environmental assets
- Consider restrictions to take in water sources bordering the Barwon River when embargoes on take exist in the Barwon River. This is relevant to the lower part of Marthaguy Creek (below the junction of Terrigal Creek), as although it does not border directly on the Barwon, it joins the Lower Macquarie River just upstream of its junction with the Barwon River.
- Monitor for changes in water demand & review access rules if usage increases or if the pattern
 of use changes
- Improve the gauging network to better indicate flow distribution and take, particularly to give flows above the junction with Terrigal Creek and below the most downstream extraction point.

Flow category EWR code ⁴⁵	/ and	Flow volume ⁴⁵	Timing ⁴⁵	Duration ⁴⁵	Frequency (LTA frequency) ⁴⁵	Maximum inter- event period ⁴⁵	Additional requirements and comments ⁴⁵
Cease-to-flow	CTF	0 ML/d		Maximum duration: In moderate years persist for 25 days & should not persist for more than 244 days ⁴⁶	Should not occur in more than 97% of years ⁴⁹		
Very-low- flow ^{47#}	VLF	Observed flow at confluence with the Macquarie ⁴⁸	Any time	No less than natural	No less than natural	No greater than natural	No fish refuge pools greater than 2m deep identified; however, there would still be benefits in protecting this flow for other objectives.
Baseflow	BF1	>20 ML/d	Anytime	In moderate years, 115 days per year. In very dry years, there may be no days with flow ⁴⁹	Days with >20 ML/day of flow occurred in at least 96% of years pre 1966 ⁴⁹	426 days ⁴⁹	
	BF2	>20 ML/d	Sep–Mar	In moderate years, 76 days per season. In very dry years, at least 12 days per season ⁴⁹	5–10 years in 10 (75% of years)	2 years	

 Table 11
 LTWP EWRs for Lower Marthaguy Creek as measured Carinda (421011)

⁴⁵ Refer to Glossary for definitions of terms and explanatory text for EWRs

⁴⁶ This is based on 1986–2017 observations. Maximum durations (for CTF) are based on 95th percentiles.

⁴⁷ Orange shading (and # in the 1st column of row) denotes that these flows are a lower priority for delivery of discretionary water as there are no identified fish refuge pools in this planning unit. However, the LTWP acknowledges the importance of protecting these flows for other ecological objectives (e.g. Native vegetation NV1, NV3; Ecosystem functions, EF1, EF2, EF6 etc.)

⁴⁸ There is no end of system gauge for the Marthaguy. Flow at Carinda required to provide a flow to the Macquarie will vary depending on how dry channel is and seasonal conditions. Flows at Macquarie @Brewon gauge (421907) may assist in determining if flows from the Marthaguy have reached the Macquarie.

⁴⁹ Based on 1944–1966 observations. Maximum inter-event periods and 'very dry years' durations (for other flows) are based on 95th percentiles. BF2 'very dry years' duration based on the 25th percentile as this flow is only required every 5–10 years. Duration for 'moderate years' are based on number of days of flow in median years.

Flow category EWR code ⁴⁵	/ and	Flow volume ⁴⁵	Timing ⁴⁵	Duration ⁴⁵	Frequency (LTA frequency) ⁴⁵	Maximum inter- event period ⁴⁵	Additional requirements and comments ⁴⁵
	BF3	To be determined ⁵⁰	hypoxic bottom layer is likely to develop to an extent that it could produce hypoxic conditions in the entire water column should subsequent mixing occur. Requirement more likely during periods of extreme heat and low flow. This flow would also help reduce the risk of fish mortality due to extremely high water temperatures. Further work (see Table 22 of Part A) is required to provide tools to develop flow requirements.			As these flows are to maintain water quality, weir level management (where relevant), natural flows, operational water and non-discretionary environmental water should be used in the first instance before considering the use of discretionary environmental	
De-stratifying flow	DSF	To be determined ⁵⁰	hypoxic bottom la entire water colur extreme heat and Further work (see	As required to destratify refuge pools during periods of identified high risk where a hypoxic bottom layer has developed and could produce hypoxic conditions in the entire water column when mixed. Requirement more likely during periods of extreme heat and low flow. Further work (see Table 22 of Part A) is required to better identify risk periods and brovide tools to develop flow requirements.			water. There are weir pools in the Marthaguy that are known to be refuges for golden perch and eel- tailed catfish (Sam Davis. DPI- Fisheries, pers. comm. 2019). The DSF flow must be provided in a manner which considers potential impacts from turning over refuge pools and initial water temperature increases from flows travelling over hot, dry river beds. Consult NSW DPI- Fisheries on interim flow protocols and in developing detailed future requirements (see recommended further work, Table 22 of Part A).
Small fresh	SF1	>70 ML/d	Anytime (ideally Oct–Apr)	10 days	Annually (10 years in 10)	1 year	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th

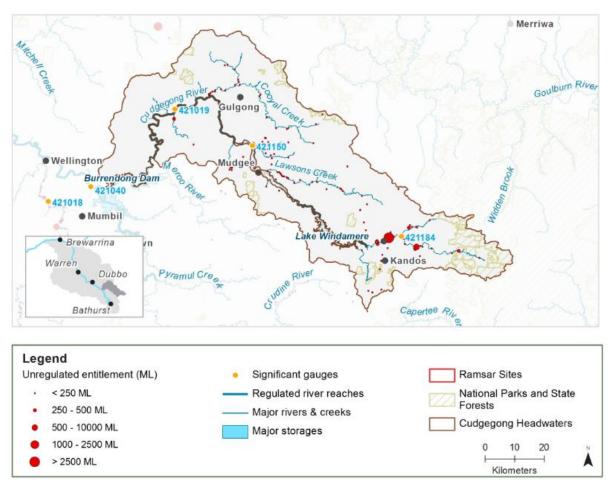
⁵⁰ Further work is required to confirm thresholds. See action on 'tools for preventing fish deaths due to stratification' in Table 22 of Part A. Delivery options to the Marthaguy are limited and the feasibility of delivery at required rates will need to be further investigated. Protection of adequate flows from extraction may be the only feasible management tool in many cases.

Flow category EWR code ⁴⁵	y and	Flow volume ⁴⁵	Timing ^{₄5}	Duration ⁴⁵	Frequency (LTA frequency) ⁴⁵	Maximum inter- event period ⁴⁵	Additional requirements and comments ⁴⁵
							percentile (fastest 5% of rates of fall) was 30% per day for 'pre- development' observed flows from 1944–1960 (e.g. 70ML- 50ML-35ML).
	SF2	70–800 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	2 years	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 30% per day for 'pre- development' observed flows from 1944–1960 (e.g. 70ML- 50ML-35ML).
	SF3	>70 ML/d	Anytime (ideally July–Sep for initial flow & Oct–Apr for subsequent flow.	28 days	5 years in 10 (50% of years)	4 years	
Lorgo freeb*	LF1	>800 ML/d	Anytime (ideally Jul–Sep)	5 days	5–10 years in 10 (75% of years)	2 years	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 20% per day for 'pre- development' observed flows from 1944–1960 (e.g. 700ML- 660ML-530ML).
Large fresh*	LF2	>800 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years	Maintain the maximum rate of event recession within natural range: As a guide, the 5 th percentile (fastest 5% of rates of fall) was 20% per day for 'pre- development' observed flows from 1944–1960 (e.g. 700ML- 660ML-530ML).

Flow category EWR code45	y and	Flow volume ⁴⁵	Timing ⁴⁵	Duration ⁴⁵	Frequency (LTA frequency) ⁴⁵		Additional requirements and comments ⁴⁵
	OB/ WS1	Not applicable	e. For core wetland	d areas, which are not a fea	ture of this PU		
	OB/ WS2	Not applicable	e. Overbank flows	of 10 days duration do not	occur with the require	ed frequency of 50	% of years
Overbank/ Wetland flow	OB/ WS3	>2,900 ML/d	Anytime (ideally Sep– Feb)	5 days	2–3 years in 10 (25% of years)	5 years	
Small ⁵¹	OB/ WS4	>2,900 ML/d	Anytime (ideally Aug– Mar)	Persistence of water 3 months. Flow of 5 days (median natural duration) required to fill depressions & soil profile.	3–10 years in 10 (65% of years)	5 years	Lower frequency required in this PU because the main non-woody vegetation is likely to be more drought tolerant
Overbank/ Wetland flow Medium ^{51 *}	OB/ WM	Not determined	Anytime (ideally Aug– Mar)	Persistence of water. 3 months for wetland depressions	5 years in 10 (50% of years)	5 years	
Overbank/ Wetland flow Large ^{51*}	OB/ WL	Not determined	Anytime (ideally Aug– Mar)	Persistence of water 3 months for wetland depressions.	2–3 years in 10 (25% of years)	5–10 years	

⁵¹ Grey shading (and * in 1st column of row) denotes that flows of this size are not able to be delivered with discretionary environmental water (although deliveries to the Marshes assist in achieving these flows). Flows of this size are dependent on natural events but may be impacted by water policy including floodplain harvesting, extraction and flood mitigation zone management.

3. Unregulated planning units


3.1 Macquarie system – Cudgegong headwaters

This PU consists of the following water sources:

- Upper Cudgegong River Water Source
- Lawsons Creek Water Source
- Cooyal Wialdra Creek Water Source
- Piambong Creek Water Source
- Goolma Creek Water Source
- Pipeclay Creek Water Source

These water sources were amalgamated to align with the DPIF BPEOM zone of the same name, however several differences remain. DPIF have split the Burrendong Dam Tributaries Water Source and placed the north–eastern section (Meroo River/Creek) in their 'Cudgegong Headwaters' monitoring zone, and the remainder in 'Upper Macquarie Tributaries'. To avoid splitting the Burrendong Dam Tributaries Water Source Unit we have put the whole of this water source into Upper Macquarie Tributaries PU.

The rivers of the upper Macquarie catchment flow within well-defined channels and have only limited floodplains (Green et al. 2011). Storages in this PU include Rylstone Dam (3320 ML storage capacity) and Redbank Creek Dam (180 ML storage capacity) in Mudgee. This PU excludes Windermere and Burrendong dams and the regulated Cudgegong River.

Figure 13 Map of Macquarie system – Cudgegong headwaters PU. Area outside of PU has been faded. Significant gauges relevant to the PU are Cudgegong River @ Upstream Rylestone (421184), Cudgegong River @ Wilbertree Road (421150), Cudgegong River @ Yamble Bridge (421019), 421038 Cudgegong River at Rylstone Bridge, Wyaldra Creek at Gulgong (421058), Meroo Creek at Yarrabin No.2 (421073).

Named priority environmental assets

- Upper unregulated Cudgegong River
- Cudgegong River tributaries including Davis Creek, Swampy Creek, Coxs Creek, Towinhingy Creek, Lawsons Creek, Cooyal Wialdra Creek, Piambong Creek, Goolma Creek, Pipeclay Creek channel & riparian zone
- Lawsons Creek tributaries including Bara Creek, Long Gully, Wet Swamp Creek, Reedy Creek
- Cooyal Creek tributaries including Spring Creek, Stony Creek, Back Creek, Chainman's Creek
- Wialdra Creek tributaries including Slapdash Creek
- Piambong Creek tributaries including Fromes Creek, Crowirs Creek, Californian Gully & Baylys Creek
- Goolma Creek tributaries
- Pipeclay Creek tributaries including Woonambula Creek, Fords Creek & Pig & Whistle Creek

Key wat	er-depend	dent va	lues

(CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)

Native fish	Australian smelt ^{X + Y} carp gudgeon ^{X + Y} dwarf flat-headed gudgeon ^X	golden perch ^{X + Y} Murray cod (V) ^{X + Y} mountain galaxias ^{X + Y}	
Nauve IISI	eel-tailed catfish (E) $^{X+Y}$ flat-headed gudgeon $^{X+Y}$	northern river blackfish $X + Y$ purple-spotted gudgeon (E) Y	
Waterbirds	47 species recorded, including black-neck cattle egret (C, J), common greenshank (C (C) & Latham's snipe (C,J,R)	ed stork (E), brolga (V), Caspian tern (C, J), C,J,R), black-necked stork (E).glossy ibis	
Native vegetation	1100 ha of water-dependent native vegetation communities including 370 ha of river red gum		
Registered water- dependent cultural assets	No registered water-dependent cultural assets were found in the known site data* *It is acknowledged that unregistered Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present		

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, dwarf flat-headed gudgeon, flat-headed gudgeon, mountain galaxias

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod, eel-tailed catfish, northern river blackfish, purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrolody	(DPIE-Water,	In	prep)	

Upper Cudgegong River Water Source: Simulated inflows					
80 th percentile: 4 ML/d	50 th percentile: 29 ML/d	20th percentile: 121 ML/d			
1.5 ARI : 4800 ML/d	2.5 ARI : 7400 ML/d	5 ARI : 12700 ML/d			

Cease-to-flow periods and low flows are highly altered (>50% departure from base case), and freshes and overbank flows are moderately altered (20-50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows, freshes and overbank flows occur less frequently compared to the 'without development' model scenario. Thirty-four small water access licences (<500-250 ML) are distributed across the planning unit. In addition, two larger licences (1000-2500 ML) are located on the Cudgegong River. The total volume of unregulated entitlements for the water source is 6451 ML.

Lawsons Creek Water Source Gauge: 421038 Cudgegong River at Rylstone Bridge

80th percentile: 3 ML/d	50th percentile: 17 ML/d	20th percentile: 52 ML/d
1.5 ARI : 1100 ML/d	2.5 ARI : 2000 ML/d	5 ARI : 5200 ML/d

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. Several small water access licences are distributed across the planning unit, many of them occurring along the lower end of Lawsons Creek. The total volume of unregulated entitlements for the water source is 1496 ML.

80 th percentile: 0 ML/d	50 th percentile: 2 ML/d	20 th percentile: 19 ML/d		
1.5 ARI: 3800 ML/d	2.5 ARI : 6900 ML/d	5 ARI : 10,600 ML/d		

Cease-to-flow periods, low flows and freshes are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows and freshes occur less frequently compared to the 'without development' model scenario. Several small water access licences are distributed across the planning unit, with a small group of licences clustered on Wialdra Creek near the confluence of the Cudgegong River. The total volume of unregulated entitlements for the water source is 741 ML.

Piambong Creek Water Source Gauge: 421073 Meroo Creek at Yarrabin No.2

80 th percentile: 0 ML/d	50 th percentile: 4 ML/d	20th percentile: 38 ML/d	
1.5 ARI : 3100 ML/d	2.5 ARI : 4900 ML/d	5 ARI : 6600 ML/d	

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. Several small and a few medium sized water access licences are distributed across the planning unit. The total volume of unregulated entitlements for the water source is 925 ML.

Pipeclay Creek Water Source Gauge: 42105	8 Wyaldra Creek at Gulgong
--	----------------------------

80 th percentile: 0 ML/d	50th percentile: 0.4 ML/d	20th percentile: 4 ML/d
1.5 ARI : 700 ML/d	2.5 ARI : 1400 ML/d	5 ARI : 2100 ML/d

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. Several small water access licences are distributed across the planning unit. The total volume of unregulated entitlements for the water source is 446 ML.

Goolma Creek Water Source: no model, no licences

80 th percentile: N/A	50 th percentile: N/A	20 th percentile: N/A
1.5 ARI : N/A	2.5 ARI : N/A	5 ARI: N/A

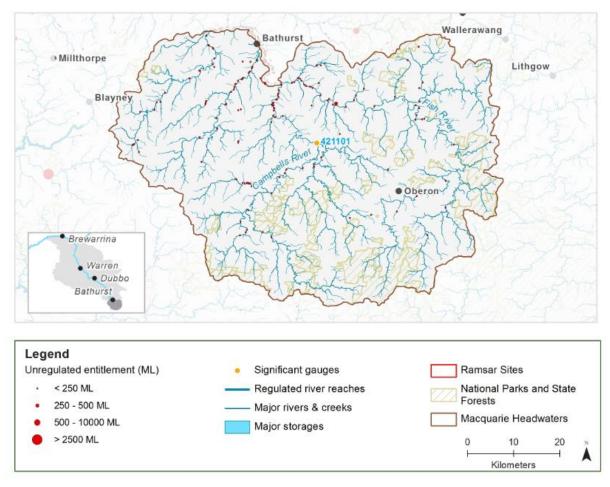
Flows do not seem to be altered by more than 20% compared to the 'without development' model scenario as assessed by the Macquarie Castlereagh WRPA Risk Assessment. There are no extraction licences in this planning unit.

CTF			Low flow & F baseflow		Freshes		Overbanks	
Hydrological alteration See Table 1 for key	H+	Upper Cudgegong Lawsons Creek Cooyal Wialdra Piambong Creek Pipeclay Creek	H-	Upper Cudgegong Lawsons Creek Cooyal Wialdra Piambong Creek Pipeclay Creek	M- /H-	Upper Cudgegong Cooyal Wialdra	M-	Upper Cudgegong
	۲٥	Goolma Creek	L ⁰	Goolma Creek	L%L-	Lawsons Creek Piambong Creek	Lº/L-	Lawsons Creek Cooyal Wialdra

		Goolma Creek	Piambong Creek				
		Pipeclay Creek	Pipeclay Creek				
			Goolma Creek				
	Trade INTO water source: Not perr	Trade INTO water source: Not permitted.					
Relevant rules from	Trade WITHIN water source: Permitted, subject to assessment within water source, but not permitted into the pool created by Rylstone Dam						
WSP	Access: No pool drawdown						
	For pump sites not within a natural pool, cease to pump rule when no visible flow						
Recommend	ed management strategies						

- Maintain existing rules in the WSP to maintain priority environmental assets
- Consider adding specific commence-to-pump rules in the Water Sharing Plan for the Upper Cudgegong above Windamere Water Source within five years to:
 - reduce the length of CTF periods
 - better protect low flows & baseflows
 - o investigate increasing commence-to-pump to 20 ML/d at 'upstream Rylstone' gauge (421184)
- Consider rostering landholder access during low flow months for the Upper Cudgegong above Windamere Water Source
- Consider implementing in the Upper Cudgegong above Windamere Water Source a first flush rule to ensure periods between small freshes are not excessively prolonged and CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents.
 - For the breaking of CTF periods, this will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.
- Consider implementing in the Upper Cudgegong above Windamere Water Source total &/or individual daily extraction limits (IDELS & TDELS)
- Ensure compliance with water access licence conditions including through metering of all licensed
 extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes.

3.2 Macquarie system – Macquarie headwaters


This PU consists of the following water sources:

- Queen Charlottes Vale Evans Plains Creek Water Source
- Campbells River Water Source
- Fish River Water Source.

These water sources were amalgamated to align with the DPIF BPEOM zone of the same name.

The Macquarie River rises in the Great Dividing Range near Oberon and is formed by the junction of the Fish River and Campbells River upstream of Bathurst. Major tributaries include Queen Charlottes Vale Creek. The rivers of the upper Macquarie catchment flow within well-defined channels and have only limited floodplains (Green et al. 2011).

The Fish River rises on the plateau south east of Oberon and flows generally to the northwest into the Macquarie River just east of Bathurst. Storages in this PU include Rydal Dam (370 ML storage capacity), which regulates water eastwards over the divide via the Fish River Scheme, Oberon Dam (45,420 ML storage capacity), and Chifley Dam (30,800 ML storage capacity).

Figure 14 Map of Macquarie system – Macquarie headwaters PU. Area outside of PU has been faded. Significant gauges relevant to the PU are Campbells River @ U/S Ben Chifley Dam (421101), Queen Charlottes Creek at Georges Plains (421053).

Named priority environmental assets

- Queen Charlottes Creek, Evans Plains Creek, Campbell River and Fish River channel and riparian zone
- Macquarie headwaters tributaries including: Ryans Creek, Mountain Run Creek, Summer Hill Creek, Caloola Creek, Georges Plains Creek, Sandy Creek, Mcleans Creek, Collins Creek, Dicks Creek, Spring Creek, Rocks Creek, The Lagoon, Davys Creek, Deep Creek, Wisemans Creek, Sheltons Gully, Little Wisemans Creek, Middle Creek, Brisbane Valley Creek, Sewells Creek, Native Dog Creek, Thompsons Gully, Chain Of Ponds Creek, Wild Cat Creek, Spring Creek, Triangle Creek, Shinglers Creek, Arkell Creek, Gum Flat Creek, O'Briens Creek, Gilmandyke Creek, Judds Creek, Poison Creek, Walbrook Creek, Racecourse Creek, Boiler Creek, Parlour Creek, Yellow Waterhole Creek, Gilmandyke Creek, Captain Kings Creek, Peppers Creek, Jumpers Flat Creek, Fosters Valley, King George Gully, Stony Creek, Alicks Creek, Salt Water Creek, Frying Pan Creek, Raineville Creek, Middle Creek, Duckmaloi River, Scotts Creek, Eusdale Creek, Mount Tannas Creek, Blossom Hill Creek, Badger Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling) Native fish Australian smelt X carp gudgeon Y northern river blackfish Y

	golden perch ^{X + Y} Macquarie perch (E) ^Y mountain galaxias ^{X + Y}	purple-spotted gudgeon (E) ^Y un-specked hardyhead ^Y			
Waterbirds	53 species recorded, including Australasian bittern (E), Australian painters snipe (E), blue-billed duck (V), freckled duck (V), Latham's snipe (C,J,R magpie goose (V), marsh sandpiper (C,J,R) & sharp-tailed sandpiper (C,J,R)				
Native vegetation	340 ha of water-dependent native vegetation communities recorded, all of which is riparian river oak				
Registered water-	No water-dependent cultural assets v	vere found in the known site data*			
dependent cultural assets	*It is acknowledged that unregistered objects, landscapes, resources & beli people as part of their continuing cult	iefs that are important to Aboriginal			

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, mountain galaxias

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod, Macquarie perch, northern river blackfish, purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

NF8 Increase the prevalence and/or expand the population of key moderate to long-lived riverine specialist native fish species into new areas (within historical range): Macquarie perch

Hydrology (DPIE-Water, in prep)

Queen Charlottes Vale Evans Plains Creek Water Source Gauge: 421053 Queen Charlottes Creek at Georges Plains

80 th percentile: 7 ML/d	50th percentile: 34 ML/d	20th percentile: 100 ML/d		
1.5 ARI : 3400 ML/d	2.5 ARI : 4800 ML/d	5 ARI : 5800 ML/d		

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. Many small water access licences are distributed across the planning unit. The total volume of unregulated entitlements for the water source is 1935 ML.

Campbells River Water Source Gauge: 421101 Campbells River upstream Ben Chifley Dam

80 th percentile: 12 ML/d	50th percentile: 55 ML/d	20 th percentile: 200 ML/d	
1.5 ARI : 3900 ML/d	2.5 ARI : 5500 ML/d	5 ARI : 8700 ML/d	

Campbells River Water Source: Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. Several small water access licences are distributed across the planning unit, with a small group of licences clustered on Peppers Creek and on the the lower Campbells River near the confluence of the Fish River. The total volume of unregulated entitlements for the water source is 2106 ML

Fish River Water Source: IQQM Modelled					
80th percentile : 0 ML/d 50th percentile : 0 ML/d 20th percentile : 136 ML/d					
1.5 ARI : 6100 ML/d	2.5 ARI : 10,000 ML/d	5 ARI : 18,900 ML/d			

Cease-to-flow, freshes and overbank flows are highly altered (>50% departure from base case), and low flows are moderately altered (20-50% departure from base case), as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows, freshes and overbanks occur less frequently compared to the 'without development' model scenario. One large (2500 ML) and 43 small (250-500 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 18,071 ML

	CTF		Low flow & baseflow		Freshes	Overba	inks
Hydrological alteration See Table 1 for key	H+	Queen Charlottes Campbells River		All water sources	H-	H-/M-	Fish River
	H-	Fish River	M-/H-		L-	Lº/L-	Queen Charlottes Campbells River
Relevant rules from WSP	Trac Que Que from catcl Vale Trac Que withi Chai Que withi Chai Acce Que or ba Que for p flow. Cam Trac Rive perm Trac Chiff	H- Fish River M-/H- sources L- L ⁰ /L- Queen Charlottes Campbell					are permitted on of water is er than 1 metre awdown on o visible are permitted the Macquarie taries MZ: Not

Campbells River tributaries MZ: No pool drawdown.

For pump sites not within a natural pool, cease to pump rule when no visible flow.

Fish River

Trade INTO water source: Not permitted.

Trade WITHIN water source: Permitted, subject to assessment **Access**: No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow.

Recommended management strategies

- Consider adding specific commence-to-pump rules in the Water Sharing Plan within five years to:
 - o reduce the length of CTF periods in Campbells River Water Source
 - better protect low flows & baseflows in Campbells River and Fish River Water Source Areas
 - investigate increasing commence-to-pump to 30 ML/d @ 421101 'Campbells River upstream Ben Chifley Dam' gauge
- Consider rostering landholder water access during low flow months in Fish River and Campbells River Water Source Areas
- Consider implementing a first flush rule to ensure CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents in Fish River and Campbells River Water Source Areas.
 - This will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.
- Consider implementing a first flush rule in the Fish River Water Source Area to ensure periods between small freshes are not excessively prolonged
- Consider implementing total &/or individual daily extraction limits (IDELS & TDELS) in Fish River and Campbells River Water Source Areas
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Maintain existing rules in the WSP to maintain priority environmental assets
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes
- Review conditions on larger in-stream storages, such as Oberon Dam and Ben Chifley Dam. This should include consideration of the need for environmental releases or the enhancement of any existing releases.

3.3 Macquarie system – Upper Macquarie tributaries

This PU consists of the following water sources, which have been amalgamated to align with the DPIF BPEOM zone of the same name:

- Winburndale Rivulet Water Source
- Macquarie River above Burrendong Water Source
- Turon Crudine River Water Source
- Burrendong Dam Tributaries Water Source
- Summerhill Creek Water Source

The Macquarie River rises in the Great Dividing Range near Oberon and is formed by the junction of the Fish River and Campbells River upstream of Bathurst. From here it flows north–west before entering Burrendong Dam upstream of Wellington. Major tributaries of the Macquarie River include the Turon and Crudine Rivers and Winburndale Rivulet. The rivers of the upper catchment flow within well-defined channels and have only limited floodplains (Green et al. 2011). Storages in this PU include Suma Park Dam (18,080 ML storage capacity), Gosling Creek Dam (645 ML storage capacity), and Spring Creek Dam (4680 ML storage capacity). Additionally, Blackman's Swamp Creek Stormwater Harvesting can divert up to 900 ML annually into Gosling Creek Dam and Ploughman's Creek Stormwater Harvesting can divert Harvesting can divert 700-800 ML annually into Suma Park Dam.

Note that this consists only of the tributaries of the Macquarie River and Burrendong Dam. The unregulated Macquarie River itself is a separate unit (see Section 3.4). This is because the DPIF BPEOM program separated tributaries from the river and we have aligned areas.

There is a difference between the boundaries of the PU and DPIF BPEOM zone. We have kept the entire Burrendong Dam Tributaries Water Source Unit in this PU. DPIF has put the Meroo River/Creek section of this in their 'Cudgegong Headwaters' BPEOM zone.

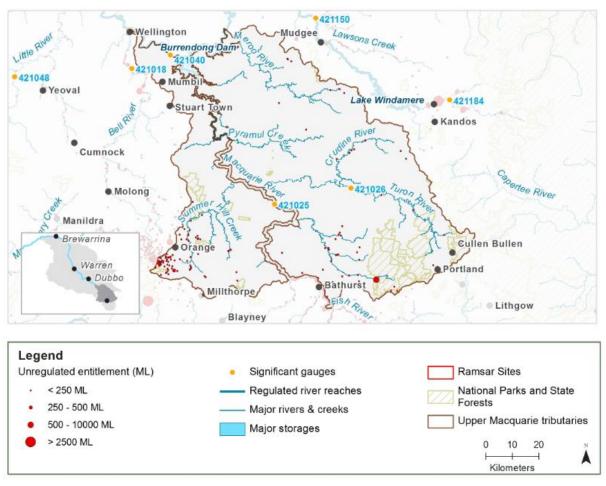


Figure 15Map of Macquarie system – Upper Macquarie Tributaries PU.
Area outside of PU has been faded. Significant gauges relevant to the PU are
Winburndale Rivulet at Howards Bridge (421072), Macquarie River at Dixons Long
Point (421080), Turon River at Sofala (421026), Meroo Creek at Yarrabin No.2
(421073), Lewis Ponds Creek at Ophir (421052).

Named priority environmental assets

- Macquarie River, Turon River, Winburndale Rivulet and Summer Hill Creek channel & riparian zone
- Winburndale Rivulet tributaries including Cheshire Creek, Rovers Creek, Clear Creek & Gulf Stream
- Macquarie River tributaries including Sawpit Creek, Raglan Creek & Jordan Creek
- Turon River tributaries including Green Gully, Coolamigal Creek & Jews Creek
- Burrendong Dam tributaries, including Meroo Creek, Wollerang Creek, Pyramul Creek, Green Valley Creek, Triamble Creek, Merinda Creek, Grattai Creek, Guigong Creek
- Burrendong Dam tributaries floodplain wetlands
- Summer Hill Creek tributaries including Gosling Creek, Brandy Creek, Spring Creek, Dairy Creek, Emu Swamp Creek, Licking Hole Creek & Blackmans Swamp Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)			
Native fish	Australian smelt ^{X+Y} carp gudgeon ^{X+Y} dwarf flat-headed gudgeon ^X eel-tailed catfish (E) ^{X+Y} flat-headed gudgeon ^{X+Y} golden perch ^{X+Y} Macquarie perch (E) ^Y mountain galaxias ^{X+Y}	Murray cod (V) ^{X+Y} eel-tailed catfish (E) ^{X+Y} mountain galaxias ^{X+Y} Murray cod (V) ^{X+Y} Murray–Darling rainbowfish ^Y northern river blackfish ^{X+Y} purple-spotted gudgeon (E) ^Y un-specked hardyhead ^Y	
Waterbirds	55 species recorded, including Australian painted snipe (E), blue-billed duck (V), Caspian tern (C,J), common sandpiper (C,J,R), curlew sandpiper (E, C,J,R), freckled duck (V), Latham's snipe (C,J,R), magpie goose (V), sharp-tailed sandpiper (C,J,R) & red-necked stint (C,J,R)		
Native vegetation	2800 ha of water-dependent native vegetation communities including riparian river red gum & river oak		
Registered water- dependent cultural assets	Carved trees, ceremony & dreaming sites. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.		

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, flat-headed gudgeon, un-specked hardyhead, northern river blackfish & Murray–Darling rainbowfish

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch & silver perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod & eeltailed catfish

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrology (DPIE-Water, in prep)

Winburndale Rivulet Water Source Gauge: 421072 Winburndale Rivulet at Howards Bridge

80 th percentile: 3 ML/d	50 th percentile: 29 ML/d	20 th percentile: 142 ML/d
1.5 ARI : 4500 ML/d	2.5 ARI : 9200 ML/d	5 ARI : 15,800 ML/d

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. One medium (<1000 ML) and 25 small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 1635 ML.

Macquarie River above Burrendong Water Source Gauge: 421080 Macquarie River at Dixons Long Point

80 th percentile: 76 ML/d	50th percentile: 349 ML/d	20 th percentile: 1570 ML/d
1.5 ARI : 31.600 ML/d	2.5 ARI : 54.100 ML/d	5 ARI : 100,900 ML/d

Low flows are highly altered (>50% departure from base case) and cease-to-flows have a high-risk rating as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Low flows occur less frequently compared to the 'without development' model scenario. One large (2500 ML), 3 medium (500-1000 ML) and 72 small (<250 ML) water access licences are distributed across the water source, most of which are clustered near the top of the water source. The total volume of unregulated entitlements for the water source is 25,586 ML.

Turon Crudine River Water Source Gauge: 421026 Turon River at Sofala

80 th percentile: 14 ML/d	50 th percentile: 79 ML/d	20 th percentile: 342 ML/d
1.5 ARI : 13,500 ML/d	2.5 ARI : 23,400 ML/d	5 ARI : 35,800 ML/d

Cease-to-flow periods are highly altered (>50% departure from base case), and low flows are moderately altered (20-50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. 16 small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 328 ML.

Burrendong Dam Tributaries Water Source Gauge: 421073 Meroo Creek at Yarrabin No.2

80 th percentile: 0 ML/d	50 th percentile: 13 ML/d	20th percentile: 112 ML/d
1.5 ARI : 7400 ML/d	2.5 ARI : 14,000 ML/d	5 ARI : 22,000 ML/d

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. 11 small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 584 ML.

Summerhill Creek Water Source Gauge: 421052 Lewis Ponds Creek at Ophir

80 th percentile: 7 ML/d	50 th percentile: 35 ML/d	20th percentile: 169 ML/d
1.5 ARI : 6100 ML/d	2.5 ARI : 13,000 ML/d	5 ARI : 21,500 ML/d

Cease-to-flow periods and low flows are highly altered (>50% departure from base case), and freshes are moderately altered (20-50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows and freshes occur less frequently compared to the 'without development' model scenario. One large (2500 ML), two medium (500-1000 ML) and 84 small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 11,765 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
See Table 1 for key	H+	M-/H-	L-/M-	L%L-

	All water sources excluding Macquarie River above Burrendong Trade INTO water source: Not permitted. Trade WITHIN water source: Permitted, subject to assessment Access: No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow. Macquarie River above Burrendong Water Source
Relevant rules from WSP	 Trade INTO water source: <u>Macquarie River above Bathurst MZ:</u> Trades are permitted in from the Campbells River downstream management zone in the Campbells River Water Source. <u>Macquarie River between Bathurst & Evans Plains Creek MZ</u>: Trades are permitted in from the Campbells River, Fish River, Queen Charlottes Vale Evans Plains Creek, Summerhill Creek, Turon Crudine River & Winburndale Rivulet water sources, & the Macquarie River above Bathurst & the Macquarie River tributaries management zones. <u>Macquarie River tributaries management zone MZ</u>: Trades are permitted in from the Campbells River, Fish River, Queen Charlottes Vale Evans Plains Creek, Summerhill Creek, Turon Crudine River, & Winburndale Rivulet water sources, & the Macquarie River ributaries management zone MZ: Trades are permitted in from the Campbells River, Fish River, Queen Charlottes Vale Evans Plains Creek, Summerhill Creek, Turon Crudine River, & Winburndale Rivulet water sources, & the Macquarie River above Bathurst & the Macquarie River between Bathurst & Evans Plains Creek management zones. Trade WITHIN management zone: Permitted, subject to assessment (all management zones) Access: <u>Macquarie River above Bathurst MZ</u>: Pumping is not permitted when Ben Chifley Dam is equal to or less than 22% capacity, which equates to the water level being approximately 700 m at the storage gauge. <u>Macquarie River between Bathurst & Evans Plains Creek MZ</u>: No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow.
Recommende	<u>Macquarie River tributaries MZ:</u> No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow.
recommentat	a managoment etrategies

- Consider adding specific commence-to-pump rules in the Water Sharing Plan within five years to:
 - o reduce the length of CTF periods in Winburndale Rivulet Water Source Area
 - o better protect low flows & baseflows Winburndale Rivulet Water Source Area
 - investigate increasing commence-to-pump to 25 ML/d @ 421072 'Winburndale Rivulet at Howards Bridge' gauge
- Consider rostering landholder water access during low flow months in Winburndale Rivulet Water Source Area
- Consider implementing a first flush rule to ensure CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents in Winburndale Rivulet Water Source Area.
 - This will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.
- Consider implementing total &/or individual daily extraction limits (IDELS & TDELS) in Winburndale Rivulet Water Source Area
- Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

3.4 Macquarie system – Upper Macquarie River above Burrendong

This PU has been split from the Upper Macquarie tributaries PU (Section 3.3) to align with the DPIF BPEOM zone that created the river as a separate zone.

The Macquarie River rises in the Great Dividing Range near Oberon and is formed by the junction of the Fish River and Campbells River upstream of Bathurst. From here it flows north–west before entering Burrendong Dam upstream of Wellington.

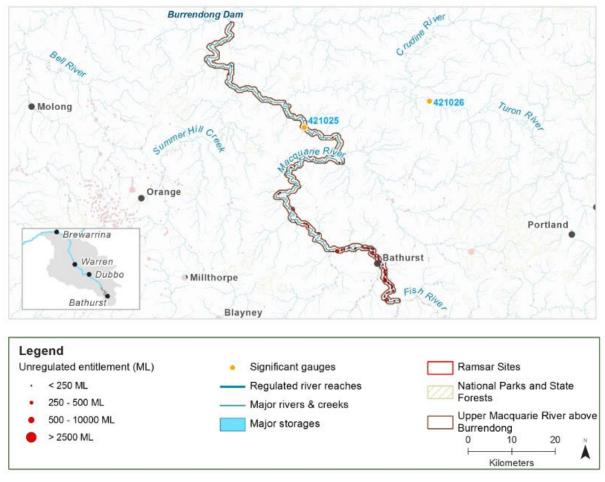


Figure 16 Map of Macquarie system – Upper Macquarie River above Burrendong PU. Area outside of PU has been faded. Significant gauges relevant to the PU are Macquarie River at Dixons Long Point (421080).

Named priority environmental assets

Macquarie River channel & riparian zone

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)

Native fish	Australian smelt ^{X+Y} carp gudgeon ^{X+Y} eel-tailed catfish (E) ^{X+Y} flat-headed gudgeon ^{X+Y} golden perch ^{X+Y} Macquarie perch (E) ^Y mountain galaxias ^{X+Y}	Murray cod (V) ^{X + Y} Murray–Darling rainbowfish ^Y northern river blackfish ^Y purple-spotted gudgeon (E) ^Y silver perch (V) ^{X + Y} trout cod (E) ^X un-specked hardyhead ^Y
Waterbirds	41 species recorded, including curlew sandpiper (E,C,J,R), Latham's snipe (C,J,R), magpie goose (V) & sharp-tailed sandpiper (C,J,R)	
Native vegetation	220 ha of water-dependent native vegetation communities including riparian river red gum & river oak	
Registered water- dependent cultural assets	Carved trees, ceremony & dreaming sites. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.	

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, flat-headed gudgeon, mountain galaxias, Murray-darling rainbowfish, un-specked hardyhead

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish, Macquarie perch, Murray cod, northern river blackfish, purple-spotted gudgeon, trout cod

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrology (DPIE-Water, in prep)

Gauge: 421080 Macquarie River at Dixons Long Point

80 th percentile: 76 ML/d	50 th percentile: 349 ML/d	20 th percentile: 1570 ML/d
1.5 ARI: 31,600 ML/d	2.5 ARI : 54,100 ML/d	5 ARI : 100,900 ML/d

Cease-to-flow events and Low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Low flows occur less frequently and cease to flow events occur more frequently compared to the 'without development' model scenario.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
See Table 1 for key	H+	Н-	L-	L-
Relevant rules from WSP	Trade INTO water source:			

<u>Macquarie River above Bathurst MZ:</u> Trades are permitted in from the Campbells River downstream management zone in the Campbells River Water Source.

<u>Macquarie River between Bathurst & Evans Plains Creek MZ</u>: Trades are permitted in from the Campbells River, Fish River, Queen Charlottes Vale Evans Plains Creek, Summerhill Creek, Turon Crudine River, & Winburndale Rivulet water sources, & the Macquarie River above Bathurst & the Macquarie River tributaries management zones.

<u>Macquarie River tributaries management zone MZ</u>: Trades are permitted in from the Campbells River, Fish River, Queen Charlottes Vale Evans Plains Creek, Summerhill Creek, Turon Crudine River, & Winburndale Rivulet water sources, & the Macquarie River above Bathurst & the Macquarie River between Bathurst & Evans Plains Creek management zones.

Trade WITHIN management zone:

Permitted, subject to assessment (all management zones)

Access:

<u>Macquarie River above Bathurst MZ:</u> Pumping is not permitted when Ben Chifley Dam is equal to or less than 22% capacity, which equates to the water level being approximately 700 m at the storage gauge.

<u>Macquarie River between Bathurst & Evans Plains Creek MZ:</u> No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow. <u>Macquarie River tributaries MZ:</u> No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow.

Recommended management strategies

- Consider adding specific commence-to-pump rules in the Water Sharing Plan within five years to:
 - o reduce the length of CTF periods
 - o better protect low flows & baseflows
 - investigate increasing commence-to-pump to 70 ML/d @ 'Macquarie River at downstream Long Point' gauge (421192)
- Consider rostering landholder water access during low flow months
- Consider implementing a first flush rule to ensure CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents.
 - This will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.
- Consider implementing total &/or individual daily extraction limits (IDELS & TDELS)
- Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

3.5 Macquarie system – Bell River and Molong Creek

This PU consists of the following water sources:

- Bell River Water Source
- Molong Creek Water Source

These water sources were amalgamated due to their connection and because they are not treated separately in the DPIF BPEOM zone for the area. The DPIF zone, 'Mid-Macquarie tributaries' is actually larger than this PU and includes the Little, Talbragar, Coolbaggie, Wambangalang Whylandra creeks and Maryvale Geurie Creek water sources.

The Bell River rises in the hills north–west of Orange and flows generally north past the town of Molong. The Bell River joins the Macquarie River at Wellington. The rivers of the upper catchment flow within well-defined channels and have only limited floodplains (Green et al. 2011). Storages in this planning unit include Molong Creek Dam (1GL storage capacity), Lake Canobolas (680 ML), and Borenore Dam.

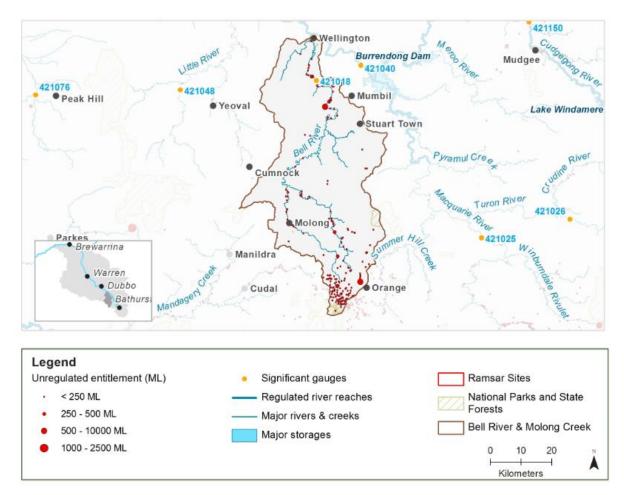


Figure 17Map of Macquarie system – Bell River and Molong Creek PU.
Area outside of PU has been faded. Significant gauges relevant to the PU are Bell
River @ Newrea (421018) and Molong River at Molong (421049).

Named priority environmental assets

- Bell River and Molong Creek channel & riparian zone
- Bell River tributaries including Ploughmans Creek, Curra Creek & Golding Creek
- Molong Creek tributaries including Towac Creek, Colemans Creek & Wattle Flat Gully

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)			
Native fish	Australian smelt X+Ymountain galaxias X+Ycarp gudgeon X+YMurray cod (V) Yeel-tailed catfish (E) Ynorthern river blackfish X+Yflat-headed gudgeon Ypurple-spotted gudgeon (E) Y		
Waterbirds	57 species recorded, including Australasian bittern (E), blue-billed duck (V), freckled duck (V), Caspian tern (C,J), Latham's snipe (C,J,R), red- necked stint (C,J,R), sharp-tailed sandpiper (C,J,R), common greenshank (C,J,R) & marsh sandpiper (C,J,R)		
Native vegetation	1060 ha of water-dependent native vegetation communities, including 900 ha of river red gum forest & woodland		
Registered water- dependent cultural assets	A scarred tree, carved tree & ceremonial sites. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.		

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, flat-headed gudgeon, & mountain galaxias

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish, Murray cod, northern river blackfish, purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrology (DPIE-Water, in prep)

Bell River Water Source Gauge: 421018 Bell River at Newrea			
80 th percentile: 11 ML/d	50 th percentile: 65 ML/d 20 th percentile: 282 ML/d		
1.5 ARI: 7600 ML/d	2.5 ARI : 14,000 ML/d	5 ARI : 26,300 ML/d	

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. Two large (1000-2500 ML), three medium (500-1000 ML), 90 small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 8157 ML.

Molong Creek Water Source Gauge: 421049 Molong River at Molong

80 th percentile: 3 ML/d	50 th percentile: 16 ML/d	20th percentile: 77 ML/d
1.5 ARI : 1900 ML/d	2.5 ARI : 4600 ML/d	5 ARI : 7000 ML/d

Cease-to-flow periods and low flows are highly altered (>50% departure from base case), and freshes are moderately altered (20-50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows and freshes occur less frequently compared to the 'without development' model scenario. One medium (500 ML) and 117 small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 5641 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks		
See Table 1 for key	H+	H-	L-/M-	Lº/L-		
	Bell River Trade INTO water source: Trades are permitted in from the Molong Creek Water Source only if the new work is located downstream of the confluence of Molong Creek & Bell River.					
	Trade WITHIN water source: Trades are not permitted from downstream of th confluence of Molong Creek & Bell River to upstream of the confluence of Molong Creek & Bell River. Other trades permitted within water source, subjet to assessment					
Relevant rules from WSP	les from pump rule when no visible flow.					
Wol	Molong Creek	a successive and the state of				
		ource: Not permitted.				
	Trade WITHIN water source: Trades are not permitted from downstream of the confluence of Molong Creek & Borenore Creek to upstream of the confluence of Molong Creek & Borenore Creek. Other trades permitted within water source, subject to assessment.					
	Access: No pool drawdown. For pump sites not within a natural pool, cease pump rule when no visible flow.					
Recommended management strategies						
Maintain aviating values in the MOD to replate priority and incompared as a to						

- Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

3.6 Macquarie system – Little River

This PU includes the Little River and its tributaries and consists of the Little River Water Source. The DPIF BPEOM zone, 'Mid-Macquarie tributaries', which encompasses this PU is larger and includes the Little, Bell, Molong, Talbragar, Coolbaggie, Wambangalang and Whylandra creeks and Maryvale Geurie Creek water sources.

Little River rises in Curumbeyenya Range within Goobang National Park, west of Molong and flows 122 km generally north north–east, joined by three minor tributaries, before reaching its confluence with the Macquarie River west of Geurie. Little River flows within well-defined channels and has only limited floodplains (Green et al. 2011).

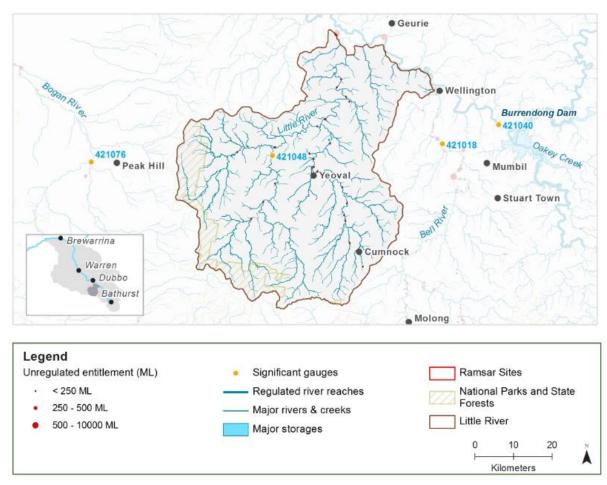


Figure 18 Map of Macquarie system – Little River PU. Area outside of PU has been faded. Significant gauges relevant to the PU are Little River at Arthurville No. 2 (421176).

Named priority environmental assets

- Little River channel & riparian zone
- Little River tributaries including: Washpen Creek, Budgebegambil Creek, Greenbah Creek, Oaks Creek, Pipeclay Creek, Wandawandong Creek, Sandy Creek, Wandabadgery Creek, Tuckwells Creek, Balrudgery Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)			
	Australian smelt X + Y	mountain galaxias ^Y	
	carp gudgeon X + Y	Murray cod (V) X + Y	
Native fish	eel-tailed catfish (E) X + Y	Murray-Darling rainbowfish ^Y	
	flat-headed gudgeon ^Y	purple-spotted gudgeon (E) ^Y	
	golden perch X + Y	un-specked hardyhead Y	

Waterbirds	34 species recorded, including Australian painted snipe (E)
Native vegetation	1274 ha of water-dependent native vegetation communities, including 1200 ha of river red gum forest & woodland
Registered water- dependent cultural assets	Scarred trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, flat-headed gudgeon, mountain galaxias, Murray–Darling rainbowfish & un-specked hardyhead

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish, Murray cod & purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrology	(DPIE-Water,	in prep)
-----------	--------------	----------

Little River Water Source Gauge: 421176 Little River at Arthurville No. 2

80 th percentile: 0 ML/d	50 th percentile: 11 ML/d	20th percentile: 32 ML/d
1.5 ARI : 1800 ML/d	2.5 ARI : 3000 ML/d	5 ARI : 8700 ML/d

Low flows are highly altered (>50% departure from base case), and cease-to-flow periods are moderately altered (20-50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario.

One large (1,000 ML) and 30 small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 2272 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks			
See Table 1 for key	M+ H- L- L ⁰						
For keyIntIntRelevant rules from WSPTrade INTO water source: Not permitted. Trade WITHIN water source: Permitted, subject to assessme 			pool, cease to				

Recommended management strategies

- Maintain existing rules in the WSP to maintain priority environmental assets
- Consider adding specific commence-to-pump rules in the Water Sharing Plan within five years to:
 - reduce the length of CTF periods
 - better protect low flows & baseflows
 - investigate increasing commence-to-pump to 25 ML/d @ 'Little River at Obley no.2' gauge (421048)
- Consider rostering landholder water access during low flow months.

- Consider implementing a first flush rule to ensure CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents.
 - This will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.
- Consider implementing total &/or individual daily extraction limits (IDELS & TDELS).
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern
 of use changes
- There is one large licence (>1000 ML/day) at the very end of the creek. Its location reduces the impact on creek flows. If trading of this licence upstream is sought, then this should only be considered in conjunction with pumping restrictions such as a commence-to-pump threshold equivalent to a small fresh level (estimated at 80 ML/day at Obley no.2 gauge).

3.7 Macquarie system – Wambangalong, Whylandra, Maryvale & Geurie creeks

This PU consists of the following water sources:

- Wambangalong and Whylandra Creek Water Source
- Maryvale and Geurie Creek Water Source

These water sources were amalgamated due to their small size, proximity and because they are not treated separately in the DPIF BPEOM zone for the area. The DPIF BPEOM zone, 'Mid-Macquarie tributaries' is actually larger than this PU and includes Little, Talbragar, Coolbaggie, Wambangalong, Whylandra creeks and Maryvale Geurie Creek water sources.

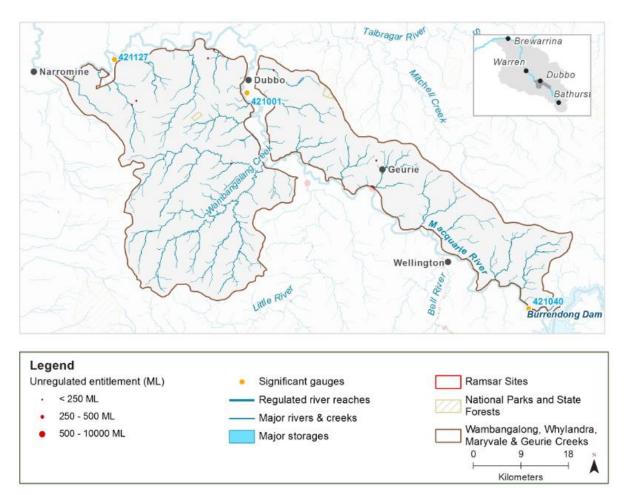


Figure 19Map of Macquarie system – Wambangalong, Whylandra, Maryvale & Geurie
creeks PU.Area outside of PU has been faded. Significant gauges relevant to the PU are

Coolbaggie Creek at Rawsonville (421055).

Named priority environmental assets

- Wambangalong, Whylandra, Maryvale and Geurie Creek channel & riparian zone
- Wambangalong Creek tributaries including Glennie Creek, Emmagool Creek & Belowrie Creek
- Whylandra Creek tributaries
- Maryvale Creek tributaries including Bodangora Creek
- Geurie Creek channel & tributaries including Limestone Creek
- Tributaries including Troy Creek, Eulomogo Creek, Forest Creek & Deep Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling) Australian smelt X+Y bony herring X

Native fish	bony herring ^X carp gudgeon ^{X + Y} dwarf flat-headed gudgeon ^Y eel-tailed catfish (E) ^{X + Y} flat-headed gudgeon ^{X + Y} golden perch ^{X + Y}	Murray cod (V) $^{X+Y}$ Murray–Darling rainbowfish $^{X+Y}$ purple-spotted gudgeon (E) $^{X+Y}$ silver perch (V) X un-specked hardyhead $^{X+Y}$
Waterbirds	52 species recorded, including blue-b marsh sandpiper (C,J,R), ruff (C,J,R), stint (C,J,R), ruff (C,J,R) & sharp-taile	Latham's snipe (C,J,R), red-necked
Native vegetation1975 ha of water-dependent native vegeta red gum (1788 ha) & non-woody wetland vRegistered water- dependent cultural assetsCamp sites, scarred trees & carved trees. It is acknowledged that other Aboriginal va landscapes, resources & beliefs that are in part of their continuing culture may be presented.		
		nal values such as sites, objects, are important to Aboriginal people as

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, dwarf flat-headed gudgeon, flat-headed gudgeon, mountain galaxias, Murray-Darling rainbowfish & un-specked hardyhead

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch & silver perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod, eeltailed catfish & purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

NF8 Increase the prevalence and/or expand the population of key moderate to long-lived riverine specialist native fish species into new areas (within historical range): purple-spotted gudgeon

Hydrology (DPIE-Water, in prep)

Wambangalong Whylandra Creek Water Source Gauge: 421055 Coolbaggie Creek at Rawsonville

80 th percentile: 0 ML/d	50 th percentile: 0 ML/d	20 th percentile: 0 ML/d
1.5 ARI : 400 ML/d	2.5 ARI : 600 ML/d	5 ARI : 800 ML/d

Flows do not seem to be altered by more than 20% compared to the 'without development' model scenario as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Five small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 169 ML.

Maryvale Geurie Creek Water Source Gauge: 421055 Coolbaggie Creek at Rawsonville

80 th percentile: 0 ML/d	50 th percentile: 0 ML/d	20 th percentile: 0 ML/d
1.5 ARI : 400 ML/d	2.5 ARI : 700 ML/d	5 ARI : 1000 ML/d

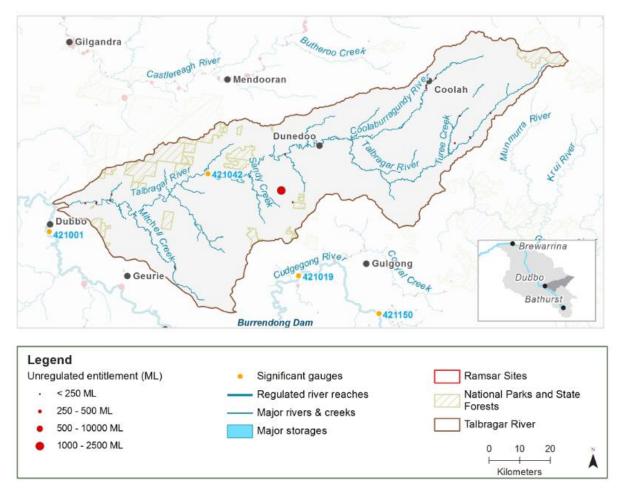
Low flow & Baseflow periods are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Low flow & Baseflow periods currently occur less frequently compared to the 'without development' model scenario.

Three small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 639 ML.

Hydrological alteration See Table 1 for key	CTF	Low flow 8	Baseflow	Freshes	Overbanks
	L+	L ^o	Wambangalong Whylandra	Lº/L-	L ^o
	L+	H-	Maryvale Geurie		
Relevant rules from WSP	les from				
Recommended management strategies					

Maintain existing rules in the WSP to maintain priority environmental assets

- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes


3.8 Macquarie system – Talbragar River

This PU consists of the following water sources:

- Lower Talbragar River Water Source
- Upper Talbragar River Water Source

These water sources were amalgamated due to their small size, proximity and because they are not treated separately in the DPIF BPEOM zone for the area. The BPEOM zone, 'Mid-Macquarie tributaries' is actually larger than this PU and includes the Little, Talbragar, Coolbaggie, Wambangalong – Whylandra Creek and Maryvale Geurie Creek water sources.

The Talbragar River rises on the western side of the Liverpool Range, north of Cassilis and flows generally south west for approximately 277 kilometres. The Talbragar River is joined by fifteen tributaries, including the Coolaburragundy River. The river reaches its confluence with the Macquarie River near Dubbo.

Map of Macquarie system – Talbragar River PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Talbragar River at Emanon (421163), Coolaburragundy River at Coolah (421056).

Named priority environmental assets

- Talbragar River channel & riparian zone
- Talbragar River tributaries including Goan Creek, Scrubby Creek, Peters Creek, Rocky Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)			
Native fish	Australian smelt ^{X + Y} bony herring ^Y carp gudgeon ^{X + Y} dwarf flat-headed gudgeon ^Y eel-tailed catfish (E) ^{X + Y} golden perch ^{X + Y}	mountain galaxias ^Y Murray cod (V) ^Y northern river blackfish ^Y purple-spotted gudgeon (E) ^Y un-specked hardyhead ^Y	
Waterbirds	45 species recorded, including blue-billed duck (V), glossy ibis (C), sharp- tailed sandpiper (C,J,R), common greenshank (C,J,R) & Latham's Snipe (C,J,R)		
Native vegetation	4700 ha of water-dependent native vegetation communities, including: river red gum (3840 ha) & river oak (715 ha)		
Registered water- dependent cultural assets	Camp sites, scarred trees, waterhole/wells & fish traps. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.		

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, dwarf flat-headed gudgeon, mountain galaxias & un-specked hardyhead

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish, Murray cod, northern river blackfish, purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

NF8 Increase the prevalence and/or expand the population of key moderate to long-lived riverine specialist native fish species into new areas (within historical range): Eel-tailed catfish

Hydrology (DPIE-Water, in prep)

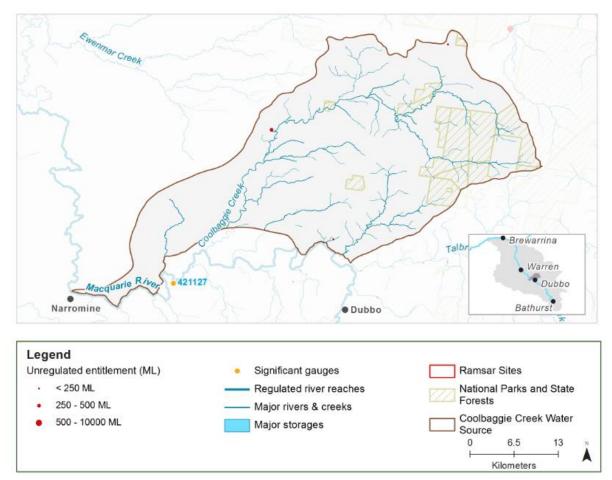
Lower Talbragar Water Source Gauge: 421163 Talbragar River at Emanon

80 th percentile: 0 ML/d	50 th percentile: 7 ML/d	20th percentile: 82 ML/d
1.5 ARI : 3300 ML/d	2.5 ARI : 6200 ML/d	5 ARI : 9900 ML/d

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. One large (1000-2500 ML) and nine small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 2251 ML. Note the large licence is on a tributary, not the main creek.

Upper Talbragar Water Source Gauge: 421056 Coolaburragundy River at Coolah

80 th percentile: 18 ML/d	50 th percentile: 64 ML/d	20 th percentile: 197 ML/d
1.5 ARI: 10600 ML/d	2.5 ARI : 16900 ML/d	5 ARI : 25000 ML/d


Cease-to-flow periods are highly altered (>50% departure from base case), and low flows are moderately altered (20-50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario. Seven small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 376 ML.

Hydrological	CTF	Low flow & baseflow	Freshes	Overbanks
alteration See Table 1 for key	H+	M-/H-	L-	L ⁰
Relevant rules	Trade INTO Upper Talbragar water source: Not permitted. Trade INTO Lower Talbragar water source permitted in from the Upper Talbragar River water source to the main trunk of the Talbragar River only.			
from WSP	Trade WITHIN water source: Permitted, subject to assessment			
	Access : No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow.			
Recommended management strategies				

- Maintain existing rules in the WSP to maintain priority environmental assets
- Consider adding specific commence-to-pump rules in the Water Sharing Plan within five years to:
 - reduce the length of CTF periods
 - o better protect low flows & baseflows
 - investigate increasing commence-to-pump to 10 ML/d @ 'Talbragar River at Elong Elong' gauge (421042)
- Consider implementing a first flush rule to ensure CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents.
 - This will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

3.9 Macquarie system – Coolbaggie Creek

This PU consists of the Coolbaggie Creek Water Source. Coolbaggie Creek runs to the south–west where it enters the Macquarie River approximately 25 kilometres downstream of Dubbo.

Figure 21

Map of Macquarie system – Coolbaggie Creek PU.

Area outside of PU has been faded. Significant gauges relevant to the PU are Coolbaggie Creek at Rawsonville (421055).

Named priority environmental assets

- Coolbaggie Creek channel & riparian zone
- Coolbaggie Creek tributaries including: Goondy Creek, Drillwarrina Creek, Branch Creek, Yellow Creek, Caledonia Creek, Sandy Creek, Red Creek, Goondy Creek
- Old Harbour Lagoon

Key water-dependent values

(CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)

Native fish	Australian smelt X + Y bony herring Y carp gudgeon X + Y dwarf flat-headed gudgeon Y eel-tailed catfish X flat-headed gudgeon X + Y	golden perch ^{X + Y} Murray cod (V) ^{X + Y} Murray–Darling rainbowfish ^{X + Y} purple-spotted gudgeon (E) ^Y un-specked hardyhead ^Y
-------------	--	---

Waterbirds	28 species recorded, including the Australian painted snipe (E)
Native vegetation	2,169 ha of water-dependent native vegetation communities, including: river red gum (1,431 ha)
Registered water- dependent cultural assets	Scarred trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, dwarf flat-headed gudgeon, flat-headed gudgeon, Murray– Darling rainbowfish & un-specked hardyhead

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish, Murray cod, purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrology (DPIE-Water, in prep)

Gauge: 421055 Coolbaggie Creek at Rawsonville

80 th percentile: 0 ML/d	50th percentile: 0 ML/d	20th percentile: 3 ML/d
1.5 ARI : 4300 ML/d	2.5 ARI : 7200 ML/d	5 ARI : 9700 ML/d

Low flow periods have experienced a high decrease compared to near-natural conditions, as assessed by the Macquarie-Castlereagh WRPA Risk Assessment.

There are 4 water access licences distributed throughout the Planning Unit with entitlements of < 250 – 500 ML. The total volume of unregulated entitlements for the water source is 466 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
See Table 1 for key	L ⁰	H-	L-	L ⁰
Relevant rules from WSP	Trade WITHIN wa	r source: Not permitted. ater source: Permitted, su drawdown. For pump site o visible flow.	•	

- Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

3.10 Macquarie system – Ewenmar Creek & Backwater Boggy Cowal

This PU consists of the following unregulated water sources:

- Ewenmar Creek Water Source (upper Ewenmar Creek)
- Backwater Boggy Cowal Water Source

It excludes the regulated Macquarie River which dissects this PU.

These unregulated water sources were amalgamated due to their ephemeral nature, their proximity and because they are not treated separately in the DPIF BPEOM zone for the area. The BPEOM zone, 'Mid-Macquarie anabranches and cowals' is actually larger than this PU and includes the Ewenmar Creek, Backwater Boggy Cowal water sources, and some of the anabranches in the Lower Bogan Water Source near the distributary (effluent) creeks.

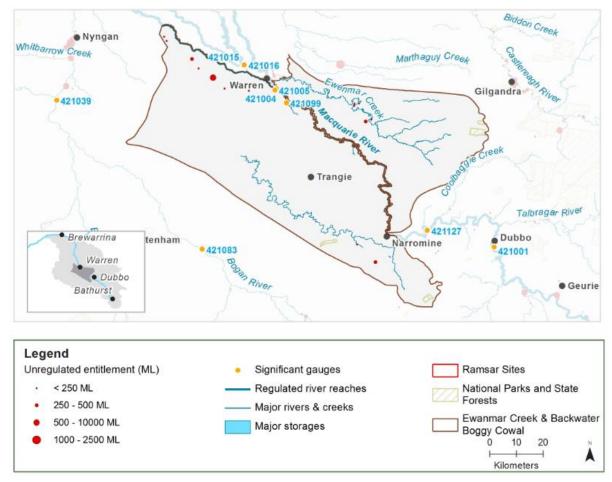


Figure 22Map of Macquarie system – Ewenmar Creek & Backwater Boggy Cowal PU.
Area outside of PU has been faded.

Named priority environmental assets

- Ewenmar Creek and Boggy Cowal channel & riparian zone
- Ewenmar Creek tributaries including Birchells Plain Creek, Macquarie River, Greenhide Creek, Crooked Creek
- Wetlands adjacent to and within the Boggy Cowal, Trangie Cowal, Greenhide Creek, Birchells Plain Creek, Ewenmar Creek, Crooked Creek & Macquarie River
- Boggy Cowal distributary streams

• Beleringar Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)				
Native fish	Australian smelt ^{X + Y} bony herring ^{X + Y} carp gudgeon ^{X + Y} dwarf flat-headed gudgeon ^Y eel-tailed catfish (E) ^{X + Y} flat-headed gudgeon ^Y flathead galaxias (CE) ^Y	golden perch ^{X + Y} Murray cod (V) ^{X + Y} Murray–Darling rainbowfish ^{X + Y} olive perchlet ^Y silver perch (V) ^Y spangled perch ^Y un-specked hardyhead ^{X + Y}		
Waterbirds	58 species recorded, including Austra stork (E), blue-billed duck (V), commo (V), Latham's snipe (C,J,R), magpie g sanderling (V) & sharp-tailed sandpipe	n greenshank (C,J,R), freckled duck pose (V), red-necked stint (C,J,R),		
Native vegetation		vegetation communities, including: river), black box (3600 ha), lignum (400 ha) 10 ha)		
Registered water- dependent cultural assets	Scarred trees, carved trees & camp si It is acknowledged that other Aborigin landscapes, resources & beliefs that a part of their continuing culture may be	al values such as sites, objects, are important to Aboriginal people as		

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, dwarf flat-headed gudgeon, flat-headed gudgeon, Murray– Darling rainbowfish & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: flatheaded galaxias & olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish & Murray cod

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrology (DPIE-Water, in prep)

Ewenmar Creek Water Source: No Model

Overbank flows are highly altered (>50% departure from base case), and the 1 year in 5 overbank flows are moderately altered (20-50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Larger flows occur less frequently compared to the 'without development' model scenario.

One medium (500 ML) and three small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 1289 ML.

Backwater Boggy Cowal Water Source: No Model

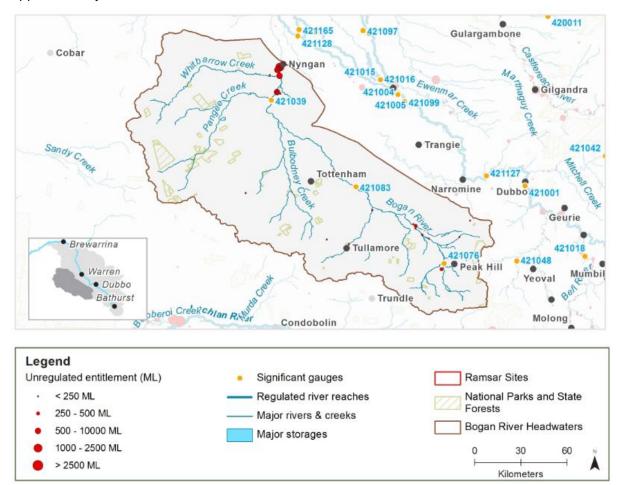
Overbank flows are highly altered (>50% departure from base case), and the 1 year in 5 overbank flows are moderately altered (20-50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Larger flows occur less frequently compared to the 'without development' model scenario.

One large (1,000 ML), Two medium (<500 ML), and seven small (<250 ML) water access licences are distributed across the water source, with the majority clustered at the bottom end of Beleringar Creek. The total volume of unregulated entitlements for the water source is 2631 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
See Table 1 for key	N/A	N/A	N/A	H-
Relevant rules from WSP	Trade INTO water source: Not permitted. Trade WITHIN water source: Permitted, subject to assessment Access: For Backwater Boggy Cowal Water Source: No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow. For Ewenmar Creek Water Source: Pumping is not permitted when there is no visible flow at Ewenmar Creek at Oxley Highway bridge.			
Recommend	ed management s	trategies		

Maintain existing rules in the WSP to maintain priority environmental assets

- Ensure compliance with water access licence conditions including through metering of all
- licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes


3.11 Upper Bogan system – Bogan River and headwaters (above Nyngan)

This PU consists of the following water sources:

- Upper Bogan Water Source
- Bulbodney Grahway Water Source

These water sources were amalgamated due to their proximity and because they are not treated separately in the DPIF BPEOM zone for the area. DPIF has separated this zone, 'Bogan Headwaters' from the river channel itself, but this has not been done for the LTWP.

The Bogan River starts in the Hervey Range near Peak Hill and flows north–west to Nyngan. The western side of the catchment is drained by four major tributaries: Bullock, Bulbodney, Pangee and Whitbarrow creeks. The eastern catchment between the Bogan and Macquarie rivers is ill-defined. The total catchment area of the Bogan River upstream of Nyngan is approximately 18,000 km².

Named priority environmental assets

Bogan River and Bulbodney Grahway Creek channel & riparian zone

Tributaries: Sandy Creek, Bullock Creek, Bradys Cowal, Genaren Creek, Burrill Creek, Gundong Creek, Tomingley Creek, Bulldog Creek, Barrabadeen Creek, Ten Mile Creek, Burrandong Creek, Bay of Biscay Swamp, Genaren Creek, Pangee Creek, Whitbarrow Creek, Moore Creek, Tigers Creek

Key water-dependent values	
----------------------------	--

(CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)

Native fish	Australian smelt ^{X + Y} bony herring ^{X + Y} carp gudgeon ^{X + Y} dwarf flat-headed galaxias ^Y flathead galaxias ^Y eel-tailed catfish (E) ^{X + Y} golden perch ^{X + Y} mountain galaxias ^Y	Murray cod (V) $^{X+Y}$ Murray-darling rainbowfish Y olive perchlet $^{X+Y}$ purple-spotted gudgeon (E) Y silver perch (V) X spangled perch $^{X+Y}$ un-specked hardyhead $^{X+Y}$	
Waterbirds	53 species recorded, including Australasian bittern (E), black-necked stork (E), brolga (V), Caspian tern (C,J), freckled duck (V) & gull-billed tern (C)		
Native vegetation	133,000 ha of water-dependent native vegetation communities, including: river red gum (13,000 ha), coolibah (10,000 ha), black box (19,000 ha), lignum (700 ha) & non-woody wetland vegetation (6700 ha)		
Registered water- dependent cultural assets	Ceremony & dreaming sites, carved trees & scarred trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered		

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, carp gudgeon, dwarf flat-headed gudgeon, bony herring, mountain galaxias, Murray–Darling rainbowfish & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet & flathead galaxias

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: purple-spotted gudgeon, eel-tailed catfish & Murray cod

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

NF7 Increase the prevalence &/or expand the population of key moderate to long-lived riverine specialists into new areas (within historical range): olive perchlet

NF8 Increase the prevalence and/or expand the population of key moderate to long-lived riverine specialist native fish species into new areas (within historical range): Eel-tailed catfish

Hydrology (DPIE-Water, in prep)

Bulbodney Grahway Water Source Gauge: 421083 Bogan River at Dandaloo

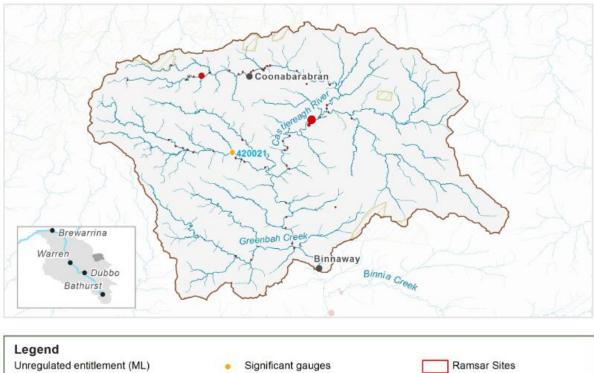
80 th percentile: 0 ML/d	50 th percentile: 0 ML/d	20th percentile: 3 ML/d
1.5 ARI: 4300 ML/d	2.5 ARI : 7200 ML/d	5 ARI: 9700 ML/d

Several water access licence entitlements (< 250 - 2500 ML) are distributed throughout the Bulbodney Grahway Water Source Area. The total volume of unregulated entitlements for the water source is 8123 ML. Two of these licences, with entitlement totalling 1,312 ML, are high flow licences, with pumping permitted only when the flow on the Bogan River at Neurie Plains gauge exceeds 635 ML/day. As Assessed by the Macquarie-Castlereagh WRPA Risk Assessment the Bulbodney Grahway Water Source Area has experienced a high decrease in Low flow and baseflows compared to modelled near-natural conditions. CTF, Freshes and Overbank events have experienced low hydrological alteration compared to near-natural conditions.

Upper Bogan River Water Source Gauge: 421083 Bogan River at Dandaloo				
80 th percentile: 0 ML/d	50 th percentile: 0 ML/d	20th percentile: 2 ML/d		
1.5 ARI: 2500 ML/d	2.5 ARI : 6700 ML/d	5 ARI : 17,200 ML/d		

11 small (<250 ML) and two medium (<1000 ML) water access licence entitlements are distributed throughout the Upper Bogan Water Source Area. The total volume of unregulated entitlements for the water source is 1735 ML. Two of these licences, with entitlement totalling 1082 ML, are high flow licences, with pumping permitted only when the flow on the Bogan River at Neurie Plains gauge exceeds 635 ML/day. As assessed by the Macquarie-Castlereagh WRPA Risk Assessment the Upper Bogan Water Source Area has experienced a high degree of hydrological alteration compared to near-natural conditions, including:

- High increase in CTF events
- High decrease in Low flow and baseflow
- High decrease in freshes
- Moderate decrease in overbank events


Hydrological	CTF		Low flow & baseflow	<u>k</u>	Fresh	ies	Over	oanks
alteration See Table 1	H+	Upper Bogan		All water	H-	Upper Bogan	M-	Upper Bogan
for key	L+	Bulbodney Grahway	H-	sources	L-	Bulbodney Grahway	Lº	Bulbodney Grahway
Relevant rules from WSP	Trad or Bu (spec Trad No p wher Bulb Trad Bulb Uppe Nyng addit Lowe Pool flow) Uppe Fool flow) Trad Acce Bulb pool, Lowe Lowe Uppe weir.	odney Grahwa cease to pump er Nyngan Weir er Nyngan weir er Nyngan Weir er Nyngan weir	way Creek w high flow) lice or source: Per For pump sive ay source: <u>y:</u> Trades are water source management) licences are <u>r Pool:</u> Trades ot permitted <u>r Pool:</u> Trades ot permitted <u>r Pool:</u> Trades ot permitted er source: Per <u>y:</u> No pool dr prule when r <u>r Pool:</u> Pump pool is lowe <u>r Pool:</u> Pump pool is 70 ce	ater sources ences are no ermitted, sub tes not within e permitted, sub tes not within e permitted, sub zones. Tra- e not permit is are permit in unregula into this ma ermitted, sub awdown. For no visible flo ing is not per r than 50 per ing is not per	s only of perm oject to in a nat in a nat in a nat oper Nyr des in u ted into tted into tted into tted rive nageme oject to oper nump ow. ermitted er cent opermitted	Trades in un itted into this assessment ural pool, ce the Lower B angan Weir Pou unregulated this manage rom the Upp er (special ac ent zone. assessment o sites not w d when the w of its full cap d when the w	ogan R ogan R ool & Lo river (sp ement z ber Nyn dditiona ver Nyn dditiona	ed river source. pump rule iver & ower becial cone. gan Weir I high gan Weir I high hatural vel in the vel in the

- Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

3.12 Castlereagh system – Castlereagh River above Binnaway

This PU consists of the Castlereagh River above Binnaway Water Source. The DPIF BPEOM zone, 'Castlereagh headwaters' encompasses this PU, but also includes tributaries of the Castlereagh River (but not the river itself) in the Binnaway to Gilgandra and Tooraweenah to Coonamble Tributaries water sources.

The Castlereagh River rises approximately 20 km west of Coonabarabran in the Warrumbungles and flows south to Binnaway. The Castlereagh and its tributaries are unregulated, except for the effects of Timor Dam (1,140 ML storage capacity), which is operated for Coonabarabran water supply.

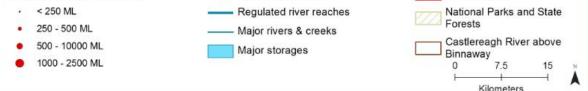


Figure 24Map of Castlereagh system – Castlereagh River above Binnaway PU.Area outside of PU has been faded. Significant gauges relevant to the PU are
Castlereagh River at Binnaway (420007).

Named priority environmental assets

Castlereagh River channel & riparian zone

Castlereagh above Binnaway tributaries: Shawns Creek, Jews Gully, Baby Creek, Guntahaba Creek, Dog Trap Creek, Mountain Creek, Front Creek, Fox Creek, Deadmans Gully, Back Belar Creek, Woolshed Creek, Box Ridge Creek, Pipeclay Creek, Tenandra Creek, Cutlers Camp Creek, Belar Creek, Urabrible Creek, Billy Kings Creek, Nandi Creek, Flaggy Creek, Mobara Creek, Colwells Gully, Gundi Creek, Jack Halls Creek **Key water-dependent values** (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)

	it modeling)			
Native fish	Australian smelt ^{X+Y} bony herring ^X carp gudgeon ^{X+Y} dwarf flat-headed gudgeon ^Y eel-tailed catfish (E) ^{X+Y} golden perch ^{X+Y}	mountain galaxias ^{X + Y} Murray cod (V) ^Y northern river blackfish ^{X + Y} purple-spotted gudgeon (E) ^{X + Y} spangled perch ^{X + Y}		
Waterbirds	32 species recorded			
Native vegetation	1,618 ha of water-dependent native vegetation communities, including 57 ha of river red gum forest & woodland			
Registered water- dependent cultural assets	Fish traps & carved trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.			

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, dwarf flat-headed gudgeon

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod, eeltailed catfish, northern river blackfish & purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrology (DPIE-Water, in prep)					
Gauge: 420007 Castlereagh River at Binnaway					
80 th percentile: 4 ML/d	50 th percentile: 20 ML/d	20th percentile: 75 ML/d			
1.5 ARI : 4000 ML/d	2.5 ARI : 10,000 ML/d	5 ARI : 27,000 ML/d			

Low flow periods have decreased moderately compared to near-natural condition as assessed by the Macquarie-Castlereagh WRPA Risk Assessment.

There are a large number of water access licences (~50) with entitlements ranging between < 250 - 2500 ML, distributed throughout the Planning Unit, with the majority occurring along the Castlereagh river. The total volume of unregulated entitlements for the water source is 5722 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
See Table 1 for key	L ⁰	M-	L-	L ⁰
Relevant rules from WSP	Trade WITHIN wa	r source: Not permitted. ater source: Permitted, su drawdown. For pump site o visible flow.	•	

- Maintain existing rules in the WSP to maintain priority environmental assets
- Consider adding specific commence-to-pump rules in the Water Sharing Plan within five years to:
 - better protect low flows & baseflows in the Castlereagh River above Binnaway Water Source Area
 - investigate increasing commence-to-pump to 15 ML/d @ 420007 'Castlereagh River at Binnaway' gauge
- Consider rostering landholder water access during low flow months
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern
 of use changes
- Review conditions on larger in-stream storages, such as Timor Dam. This should include consideration of the need for environmental releases or the enhancement of any existing releases.

3.13 Castlereagh system – Binnaway to Gilgandra

This PU consists of only the Castlereagh Binnaway to Gilgandra Water Source. The DPIF BPEOM zone, 'Castlereagh headwaters' encompasses this PU, but also includes the Castlereagh River above Binnaway Water Source and tributaries of the Castlereagh River (but not the river itself) in the Tooraweenah to Coonamble Tributaries Water Source.

The Castlereagh River flows south–south west to the small town of Mendooran then flows westerly/north–westerly towards the town of Gilgandra.

Named priority environmental assets

Castlereagh River channel & riparian zone

Castlereagh River Binnaway to Gilgandra tributaries: Apple Tree Creek, Breelong Creek, Sallabalah Creek, Denmire Creek, Gum Creek, Dead Man's Creek, Quart Pot Creek, Bellymeyer Creek, Wallumburrawang Creek, Kirban Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)			
Native fish	Australian smelt ^{X + Y} Bony herring ^{X + Y} carp gudgeon ^{X + Y}	mountain galaxias ^Y Murray cod (V) ^Y northern river blackfish ^Y	

	dwarf flat-headed gudgeon ^Y eel-tailed catfish (E) ^Y golden perch ^{X + Y}	purple-spotted gudgeon (E) ^Y spangled perch ^{X + Y} un-specked hardyhead ^Y	
Waterbirds	/aterbirds 38 species recorded, including the Australasian bittern (E)		
Native vegetation	4637 ha of water-dependent native vegetation communities, including: river red gum (2158 ha) & river oak - rough-barked apple - red gum - box riparian tall woodland (1805 ha)		
Registered water- dependent cultural assets	It is calconvelodged that other Aberiginal values auch as sites, chiests		

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring carp gudgeon, dwarf flat-headed gudgeon, mountain galaxias, un-specked hardyhead

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod, eeltailed catfish, purple-spotted gudgeon & northern river blackfish

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch and Murray cod

Hydrology (DPIE-Water, in prep).

Gauge: 420004 Castlereagh River at Mendooran

80 th percentile: 0 ML/d	50 th percentile: 0 ML/d	20 th percentile: 4 ML/d
1.5 ARI: 6900 ML/d	2.5 ARI: 26,900 ML/d	5 ARI : 45,200 ML/d

Cease-to-flow periods and low flows have been highly altered compared to near-natural conditions as assessed by the Macquarie-Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario.

There are a large number (~50) of water access licences with entitlements ranging between < 250 - 1000 ML, distributed along the length of the Castlereagh river and some tributaries. The total volume of unregulated entitlements for the water source is 7979 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
See Table 1 for key	H+	H-	L-	L ⁰
Relevant rules from WSP	 Trade INTO water source: Not permitted. Trade WITHIN water source: Permitted, subject to assessment Access: No pool drawdown. Pumping only permitted when a flow is visible 			

- · Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern
 of use changes

3.14 Castlereagh system – Tooraweenah to Coonamble Tributaries

This PU consists of only the Tooraweenah to Coonamble Tributaries Water Source. The DPIF BPEOM zone, 'Castlereagh headwaters' encompasses this PU, but also includes the Castlereagh River above Binnaway Water Source and tributaries of the Castlereagh River (but not the river itself) in the Binnaway to Gilgandra Water Source.

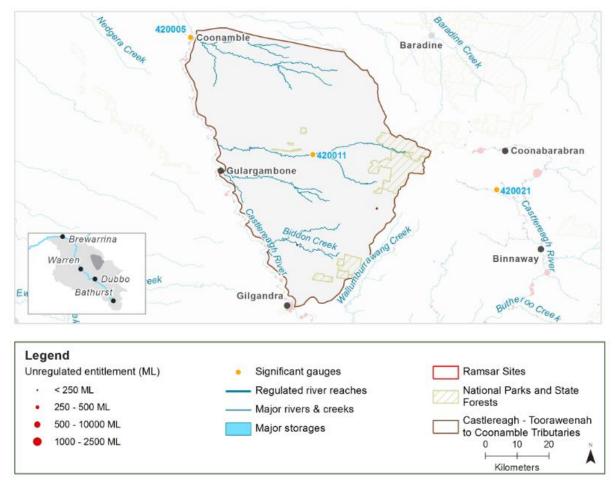


Figure 26 Map of Castlereagh system – Tooraweenah to Coonamble Tributaries PU. Area outside of PU has been faded.

Named priority environmental assets

Tooraweenah to Coonamble tributaries channel & riparian zone including Coonamble Creek, Gulargambone Creek, Quanda Quanda Creek, Baronne Creek, Biddon Creek, Wambelong Creek, Magometon Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)			
Native fish	Australian smelt ^Y bony herring ^{X + Y} carp gudgeon ^{X + Y} eel-tailed catfish (E) ^Y golden perch ^X mountain galaxias ^Y Murray cod (V) ^Y	Murray–Darling rainbowfish ^Y northern river blackfish ^X olive perchlet ^Y purple-spotted gudgeon (E) ^Y spangled perch ^{X + Y} un-specked hardyhead ^Y	

Waterbirds	39 species recorded, including brolga (V) & Australasian bittern (E)
Native vegetation	67,766 ha of water-dependent native vegetation communities, including: river red gum (3754 ha), coolibah (1028 ha), black box (7 ha) & non-woody wetland vegetation (125 ha)
Registered water- dependent cultural assets	Scarred trees, carved trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, mountain galaxias, Murray–Darling rainbowfish & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: eel-tailed catfish, Murray cod, northern river blackfish & purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch and Murray cod

Hydrology (DPIE-Water, in prep)

There are 2 small water access licences with entitlements of <250 ML located in this planning unit. The total volume of unregulated entitlements for the water source is 114 ML.

Macquarie Castlereagh WRPA Risk Assessment modelled flows indicated alteration by less than 20% compared to the 'without development' model scenario.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks	
See Table 1 for key	L+	L ⁰	L ⁰	L ⁰	
	Trade INTO water source: Not permitted.				
Relevant	Trade WITHIN water source: Permitted, subject to assessment				
rules from WSP	Access: No pool drawdown. In rivers and creeks: cease to pump rule when no visible flow.				

- Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern
 of use changes

3.15 Castlereagh system – Castlereagh River Gilgandra to Coonamble

This PU consists of the Castlereagh River Gilgandra to Coonamble Water Source of the unregulated Castlereagh River WSP. This aligns with the DPIF BPEOM zone 'Castlereagh River (Middle)'. The Castlereagh River flows north–westerly across the plains through Gulargambone and Coonamble.

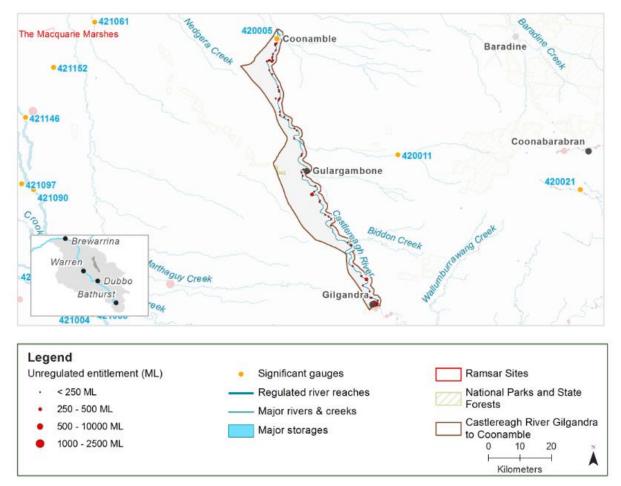


Figure 27 Map of Castlereagh system – Castlereagh River Gilgandra to Coonamble PU. Area outside of PU has been faded. Significant gauges relevant to the PU are River at Coonamble Castlereagh (420005)

Named priority environmental assets

Castlereagh River channel & riparian zone Castlereagh River tributaries including Amareb Gully, Warrana Creek, Baronne Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)			
Australian smelt X+Y bony herring X+YNative fishcarp-gudgeon X+Y eel-tailed catfish (E) Y golden perch X+Y		Murray cod (V) ^Y Murray–Darling rainbowfish ^Y olive perchlet ^Y spangled perch ^{X + Y} un-specked hardyhead ^Y	

Waterbirds	39 species recorded, including black-necked stork (E) & brolga (V)
Native vegetation	11,283 ha of water-dependent native vegetation communities, including: river red gum (2,895 ha), coolibah (109 ha), black box (222 ha) & non-woody wetland vegetation (1 ha)
Registered Water-dependent cultural assets	Scarred trees, carved trees, habitation structures. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, Murray–Darling rainbowfish & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: spangled perch & golden perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod & eeltailed catfish

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

Hydrology (DPIE-Water, in prep)

Gauge: 420005 Castlereagh River at Coonamble

80 th percentile: 0 ML/d	50 th percentile: 11 ML/d	20th percentile: 132 ML/d
1.5 ARI : 3200 ML/d	2.5 ARI : 7500 ML/d	5 ARI : 12,100 ML/d

Cease-to-flow periods and low flows have been highly altered compared to near-natural condition as assessed by the Macquarie-Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario.

There are approximately 70 water access licences in this PUdistributed evenly along the length of the Castlereagh River. In the upper part of the PU there is an entitlement of around 1500 ML and another of around 500 ML. The remaining licences are smaller, with only 5 being greater than 100 ML. The total volume of unregulated entitlements for the water source is 4861 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
See Table 1 for key	H+	H-	L-	L-
Relevant rules from WSP	 Trade INTO water source: Not permitted. Trade WITHIN water source: Permitted, subject to assessment Access: No pool drawdown. For pump sites not within a natural pool, cease to pump rule when no visible flow. 			

- Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern
 of use changes

3.16 Castlereagh system – Lower Castlereagh tributaries

This PU consists of the following water sources:

- Teridgerie Creek Water Source
- Nedgera Creek Water Source

These water sources were amalgamated due to their proximity and because they align with the DPIF BPEOM zone of the same name. Nedgera Creek and Mowlma Creeks support the largest remaining areas of floodplain woodland and wetlands in the Castlereagh (DPIE–W in prep).

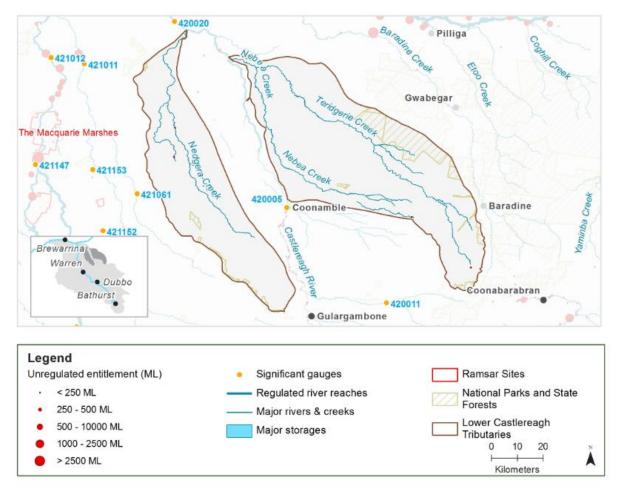


Figure 28

Map of Castlereagh system – Lower Castlereagh tributaries PU. Area outside of PU has been faded.

Named priority environmental assets

- Teridgerie Creek and Nedgera Creek channel & riparian zone
- Teridgerie Creek tributaries including: Nebea Creek, Tititiree Creek, Gidgerygah Creek, Urawilkie Creek, Weetaliba Creek, Ironbark Creek, Six Mile Creek, Murrumbah Creek, Tititiree Creek, Bucklanbah Creek, Milchomi Creek, Small Creek, Duck Holes Creek
- Nedgera Creek tributaries including: Garriwilla Watercourse, Tallegar Swamp Creek, Brooklyn Creek

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)						
Native fish	Australian smelt YMurray cod (V) Ybony herring X+YMurray–Darling rainbowfish Ycarp gudgeon X+Yolive perchlet Yeel-tailed catfish (E) Ypurple -spotted gudgeon Yflathead galaxias (CE) Yspangled perch X+Ygolden perch Yun-specked hardyhead Y					
Waterbirds	52 species recorded, including Australian painted snipe (E), black-necked stork (E), brolga (V), Caspian tern (C,J), Latham's snipe (C,J,R), sharp-tailed sandpiper (C,J,R) & marsh sandpiper (C,J,R)					
Native vegetation	144,000 ha of water-dependent native vegetation communities, including: river red gum (2000 ha), coolibah (22,000 ha), black box (11,000 ha), lignum (160 ha) & non-woody wetland vegetation (4000 ha)					
Registered water- dependent cultural assets Carved trees. It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people part of their continuing culture may be present but not registered.						

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, Murray–Darling rainbowfish & unspecked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet & flat-headed galaxias

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch & spangled perch

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod, purple-spotted gudgeon & eel-tailed catfish

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch and Murray cod

Hydrology (DPIE–Water, in prep)

Nedgera Creek Water Source

Flows do not seem to be altered by more than 20% compared to the 'without development' model scenario as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Two small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 12 ML.

Teridgerie Creek Water Source

Flows do not seem to be altered by more than 20% compared to the 'without development' model scenario as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Two small (<250 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 62 ML.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks
See Table 1 for key	Lº/L+	L ^o	L ^o	L ⁰

Relevant	Trade INTO water source: Not permitted.
rules from	Trade WITHIN water source: Permitted, subject to assessment
WSP	Access : No pool drawdown. For pump sites on rivers and creeks, cease to pump when no visible flow.

- Maintain existing rules in the WSP to maintain priority environmental assets
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern of use changes

3.17 Castlereagh system – Castlereagh River below Coonamble

This PU includes the Castlereagh River and tributaries from Coonamble to its confluence with the Lower Macquarie River. This PU consists of only the Castlereagh River below Coonamble Water Source. This aligns with the DPIF BPEOM zone, 'Castlereagh River (Lower)'.

Downstream of Coonamble the Castlereagh River flows across a broad flat plain towards its junction with the lower Macquarie River. Several creek systems contribute flows to the river after localised rainfall. Nebea and Teridgerie are the largest of these creeks on the eastern side, and Mowlma and Nedgera creeks on the western side. The Castlereagh River enters the Macquarie River approximately 20 km upstream of its confluence with the Barwon River.

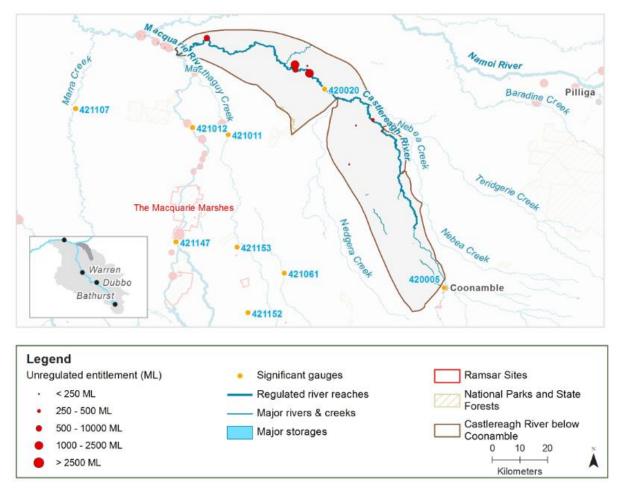


Figure 29

Map of Castlereagh system – Castlereagh River below Coonamble PU. Area outside of PU has been faded. Significant gauges relevant to the PU are Castlereagh River @ Gungalman (420020).

Named priority environmental assets

Castlereagh River, riparian zone & floodplain

Key water-dependent values (CE = Critically Endangered, E = Endangered, V = Vulnerable, C = CAMBA, J = JAMBA, R = ROKAMBA, X = species recorded in this planning unit via catch records and or Australian Museum Records where they exist, Y = species expected to occur based on MaxEnt modelling)

Native fish	Australian smelt ^{X + Y} bony herring ^{X + Y} carp gudgeon ^{X + Y} eel-tailed catfish (E) ^Y golden perch ^{X + Y} Hyrtl's tandan Murray cod (V) ^Y	Murray-Darling rainbowfish ^Y olive perchlet ^Y purple-spotted gudgeon (E) ^Y silver perch (V) ^Y spangled perch ^{X + Y} un-specked hardyhead ^Y				
Waterbirds	41 species recorded, including magpie goose (V), Caspian tern (C,J) & rednecked stint (C,J,R) $% \left(C,J,R\right) =0$					
Native vegetation	104,733 ha of water-dependent native vegetation communities, including: river red gum (1638 ha), coolibah (33,888 ha), black box (26,442 ha) & non-woody wetland vegetation (6769 ha)					
Registered water- dependent cultural assets	Scarred trees It is acknowledged that other Aboriginal values such as sites, objects, landscapes, resources & beliefs that are important to Aboriginal people as part of their continuing culture may be present but not registered.					

Native fish objectives

NF1 No loss of native fish species

NF2 Increase the distribution & abundance of short to moderate-lived generalists: Australian smelt, bony herring, carp gudgeon, Murray–Darling rainbowfish & un-specked hardyhead

NF3 Increase the distribution & abundance of short to moderate-lived floodplain specialists: olive perchlet

NF4 Improve population structure for moderate to long-lived flow pulse specialists: golden perch, silver perch, spangled perch & Hyrtl's tandan

NF5 Improve population structure for moderate to long-lived riverine specialists: Murray cod, eeltailed catfish & purple-spotted gudgeon

NF6 A 25% increase in abundance of mature (harvestable sized) golden perch & Murray cod

NF7 Increase the prevalence &/or expand the population of key short to moderate-lived floodplain specialists into new areas (within historical range): olive perchlet

NF9 Increase the prevalence and/or expand the population of key moderate to long-lived flow pulse specialists native fish species into new areas (within historical range): Hyrtl's tandan

Hydrology (DPIE–Water, in prep)

Gauge: 420020 Castlereagh River at Gungalman

Cease-to-flow periods and low flows are highly altered (>50% departure from base case) as assessed by the Macquarie Castlereagh WRPA Risk Assessment. Cease-to-flow periods currently occur more frequently, and low flows occur less frequently compared to the 'without development' model scenario.

Four small (<250 ML), one medium (500 ML), and four large (1,000-2500 ML) water access licences are distributed across the water source. The total volume of unregulated entitlements for the water source is 4868 ML. Two of the licences, totalling 3330 ML of entitlement, are high flow licences.

Hydrological alteration	CTF	Low flow & baseflow	Freshes	Overbanks			
See Table 1 for key	H+	H-	L-	L-			
Relevant rules from WSP	Trade WITHIN M Access: No poo	 Trade INTO water source: Not permitted. Trade WITHIN water source: Permitted, subject to assessment Access: No pool drawdown. For pump sites on rivers and creeks, cease to pump when no visible flow. 					

- Maintain existing rules in the WSP to maintain priority environmental assets
- Consider adding specific commence-to-pump rules in the WSP within five years to:
 - reduce the length of CTF periods
 - o better protect low flows & baseflows
 - investigate increasing commence-to-pump to 30 ML/d @ 420020 'Castlereagh River at Gungalman' gauge
- Consider rostering landholder water access during low flow months
- Consider implementing a first flush rule to ensure CTF periods are broken at ecologically relevant times by events of sufficient magnitude to avoid adverse water quality incidents.
 - This will require work to identify refuge pools, estimate the flow requirements to replenish these pools and provide sufficient dilution, and water quality monitoring to help establish and confirm these estimates.
- Consider implementing total &/or individual daily extraction limits (IDELS & TDELS)
- Improve the gauging network to better indicate flow distribution and take, particularly for the gauging of flow below the most downstream extraction point.
- Ensure compliance with water access licence conditions including through metering of all licensed extraction
- Monitor for changes in water demand & review access rules if usage increases or if the pattern
 of use changes
- Consider restrictions to take in water sources bordering the Barwon River when embargoes on take exist in the Barwon River. This is relevant to this PU, as although the main Castlereagh channel not directly join the Barwon, it joins the Lower Macquarie River just upstream of its junction with the Barwon River.

Table 12LTWP EWRs for the Castlereagh below Coonamble at Gungalman Bridge (420020).

As the Castlereagh River is unregulated, the values provide an indication of the flow sizes and frequencies which should ideally be protected. All information should be considered preliminary based on the limited dataset available (recording at this gauge began in 2001, available modelled data is provisional)

Flow category EWR code	y and	Flow volume	Timing	Duration	Frequency (LTA frequency)	Maximum inter- event period	Additional requirements and comments
Cease-to-flow	CTF	0 ML/d					Not analysed due to poor data set and difficulty in analysing low flows
Very-low-flow	VLF	Evidence of flow to confluence with Macquarie ⁵²	Anytime				Not analysed due to poor data set and difficulty in analysing low flows
Baseflow	BF1	>30 ML/d	Anytime				Not analysed due to poor data set and difficulty in analysing low flows
	BF2	>30 ML/d	Sep–Mar				Not analysed due to poor data set and difficulty in analysing low flows
		TDD ²	As required to avoid s hypoxic bottom layer conditions in the entir more likely during per				
	BF3	BF3 TBD ⁵³	This flow would also help reduce the risk of fish mortality due to extremely high water temperatures.				
			Further work (see Tab requirements.	ble 22 of Part A) is requ	uired to provide tools to	o develop flow	

⁵² Actual flow required at Gungalman Bridge to provide trickle flow through to the Macquarie will vary depending on antecedent and seasonal conditions.

⁵³ To be determined. Further work is required to confirm thresholds. See action on 'tools for preventing fish deaths due to stratification' in Table 22 of Part A.

Flow category EWR code	y and	Flow volume	Timing	Duration	Frequency (LTA frequency)	Maximum inter- event period	Additional requirements and comments	
De-stratifying flow	DSF	TBD ⁵³	hypoxic bottom layer I entire water column w heat and low flow. Further work (see Tab	As required to destratify refuge pools during periods of identified high risk where a hypoxic bottom layer has developed and could produce hypoxic conditions in the entire water column when mixed. Requirement more likely during periods of extreme heat and low flow. Further work (see Table 22 of Part A) is required to better identify risk periods and provide tools to develop flow requirements.				
	SF1	>100 ML/d	Anytime (ideally Oct–Apr)	10 days	Annually (10 years in 10)	1 year		
Small fresh	SF2	100–850 ML/d	Sep–Apr (Sep–Dec for Murray cod spawning)	14 days	5–10 years in 10 (75% of years)	2 years		
	SF3	>100 ML/d	Anytime (ideally July–Sep for initial flow & Oct–Apr for subsequent flow)	28 days	5 years in 10 (50% of years)	4 years	For movement of fish recruits from Barwon River	
Large fresh	LF1	>850 ML/d	Anytime (ideally Jul–Sep)	5 days	5–10 years in 10 (75% of years)	2 years		
	LF2	>850 ML/d	Oct–Apr	5 days	3–5 years in 10 (40% of years)	4 years		
	OB/ WS1	Not applicable.						
Overbank/ Wetland flow Small	OB/ WS2	>3,000 ML/d	Oct–Apr (but for this northern river section, anytime is considered acceptable)	10 days	Ideally 4–10 years in 10, but this may only be achieved in wetter sequences- see 'additional information' column))	4 years	There are objectives to support the floodplain specialist native fish, the olive perchlet, in this planning unit. Analysis shows small overbanks of 10 days duration only occur in 33% of years (when assessed as any time of	

Flow category and EWR code		y and Flow volume Timing		Duration	Frequency (LTA frequency)	Maximum inter- event period	Additional requirements and comments
							year for post 2001 observed flows). Therefore, this species may only be supported in wetter sequences of years or in off-channel wetlands that are filled at below bankfull levels. Following dry sequences recruits may come from the Barwon, but this requires further research to be confirmed.
	OB/ WS3	>3,000 ML/d	Anytime (ideally Sep–Feb)	5 days (the median duration of flows is greater than 5 days. 5 days is also used for riparian river red gum requirements)	2–3 years in 10 (25% of years)	5 years	For both fish dispersal/condition & riparian river red gum
	OB/ WS4	>3,000 ML/d	Anytime (ideally Aug–Mar)	Persistence of water 3 months. Flow of 5 days estimated as required to fill depressions & soil profile.	3–5 years in 10 (40% of years)	5 years	Lower frequency required in this PU because the main non-woody vegetation is rats tail couch and other relatively dry-tolerant species.
Overbank/ Wetland flow Medium	OB/ WM	Not determined	Anytime (ideally Aug–Mar)	Persistence of water. 3 months for wetland depressions.	5 years in 10 (50% of years)	5 years	
Overbank/ Wetland flow Large	OB/ WL	Not determined	Anytime (ideally Aug –Mar)	Persistence of water 3 months for wetland depressions.	2–3 years in 10 (25% of years)	5–10 years	

References

Alluvium 2010, *Key ecosystem functions and their environmental water requirements*, Report by Alluvium for Murray–Darling Basin Authority, Canberra.

Barma Water Resources, IRPEC Pty Ltd & Wettin P 2011, *Environmental Water Delivery: Macquarie River*, Prepared for Commonwealth Environmental Water Office, Department of Sustainability, Environment, Water, Population and Communities, Canberra.

DPIE–Water in prep, Risk Assessment for the Macquarie–Castlereagh Water Resource Plan Area (SW11), NSW Department of Industry–Water.

Green D, Petrovic J, Moss P and Burrell M 2011, *Water resources and management overview: Macquarie–Bogan catchment*, NSW Office of Water, Sydney.

Morris S, Pollard D, Gehrke P & Pogonoski J 2001, *Threatened and potentially threatened freshwater fishes of coastal New South Wales and the Murray–Darling Basin*. NSW Fisheries, Sydney.

NSW Department of Primary Industries (DPI) 2015, *NSW Fish Community Status Project*. Final report prepared for the Commonwealth Government. NSW Department of Primary Industries, Wollongbar.

NSW Department of Primary Industries–Fisheries (DPIF) unpublished. Fish and flows in water planning activities. NSW Department of Primary Industries, Tamworth.

NSW Office of Environment and Heritage (OEH) 2010, *Macquarie Marshes Adaptive Environmental Management Plan*, NSW Office of Environment and Heritage.

Stewardson MJ & Guarino F 2017, 2015–16 Basin scale evaluation of Commonwealth environmental water–Hydrology, Final report prepared for the Commonwealth Environmental Water Office by The Murray–Darling Freshwater Research Centre, MDFRC Publication 142/2017, October, 45pp plus annex.

Stewardson MJ 2005, Hydraulic geometry of stream reaches, *Journal of Hydrology* 306(1), 97–111.

Thomas RF, Cox S & Love, D 2013, *Macquarie Marshes Wetland Region and Water Management Area Boundaries Version 6.* NSW Office of Environment and Heritage, Sydney.

Torrible L, Wettin P, Barma D, Wilson G, Hobcroft D and O'Cock, J 2011. *Post Flood Assessment and Determination of Environmental Water Requirements for Gunningbar Creek, Lower Crooked Creek, Marra Creek and the Lower Macquarie River*. Prepared by IRPEC Pty or BWR on behalf of The Australian Government Department of Sustainability, Environment, Water, Population and Communities.